【题目】如图,将边长为的正六边形A1A2A3A4A5A6在直线上由图1的位置按顺时针
方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的
长为( ).
A. B. C. D.
【答案】A
【解析】
连A1A5,A1A4,A1A3,作A6C⊥A1A5,利用正六边形的性质分别计算出A1A4=2a,A1A5=A1A3=a,而当A1第一次滚动到图2位置时,顶点A1所经过的路径分别是以A6,A5,A4,A3,A2为圆心,以a,a,2a,a,a为半径,圆心角都为60°的五条弧,然后根据弧长公式进行计算即可.
解:连A1A5,A1A4,A1A3,作A6C⊥A1A5,如图,
∵六边形A1A2A3A4A5A6为正六边形,
∴A1A4=2a,∠A1A6A5=120°,
∴∠CA1A6=30°,
∴A6C=a,A1C=a,
∴A1A5=A1A3=a,
当A1第一次滚动到图2位置时,顶点A1所经过的路径分别是以A6,A5,A4,A3,A2为圆心,
以a,a,2a,a,a为半径,圆心角都为60°的五条弧,
∴顶点A1所经过的路径的长= +++,
=
故选A.
科目:初中数学 来源: 题型:
【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m。设AD的长为xm,DC的长为ym。
(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.
(1)求证:AM∥BN;
(2)求y关于x的关系式;
(3)求四边形ABCD的面积S,并证明:S≥2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是圆O的直径,AB、AD是圆O的弦,且AB=AD,连接BC、DC.
(1)求证:△ABC≌△ADC;
(2)延长AB、DC交于点E,若EC=5 cm,BC=3 cm,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)将△ABC沿x轴负方向平移2个单位,沿y轴正方向平移4个单位,得到△A1B1C1,请画出△A1B1C1.
(2)将△ABC绕点A顺时针旋转90°,得到△AB2C2,请画出△AB2C2.
(3)△A1B1C1绕点P顺时针旋转90°,得到△AB2C2,则点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年12月16﹣18日,第二届互联网大会在浙江乌镇胜利举行,这说明我国互联网发展走到了世界的前列,尤其是电子商务.据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.
(1)当销售单价定为50元时,求每月的销售件数;
(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;
(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2018次这样的变换得到的点A2018的坐标是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.
(1)求证:PC是⊙O的切线.
(2)求tan∠CAB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com