精英家教网 > 初中数学 > 题目详情
已知:AB是⊙O的直径,点C是⊙O外的一点,点E是AC上一点,AB=2.
(1)如图1,点D是BC的中点,当DE也AC满足什么关系时,DE是⊙O的切线?请说明理由.
(2)如图2,AC是⊙O的切线,点E是AC的中点DE∥AB.①求的值;②求阴影部分的面积.

【答案】分析:(1)若DE是圆的切线,则连接OD,OD应垂直于DE,再根据三角形的中位线定理得到OD∥AC,所以DE⊥AC,反之成立;
(2)①中,连接OD,根据平行线等分线段定理,得到D是BC的中点,根据平行线的性质和切线的性质得到DE⊥AC,结合(1)的结论,则DE也是圆的切线,从而得到OD⊥DE,根据一组邻边相等的矩形是正方形得到正方形AEDO,从而发现等腰直角三角形AOD和ADB,根据AB=2,即可求得AD的长,进一步计算;
②中,阴影部分的面积显然是正方形AEDO的面积减去扇形OAD的面积,根据①中的结论即可计算.
解答:解:(1)如图所示,
当DE⊥AC时,DE是⊙O的切线(1分)
证明:连接OD
∵AB是⊙O的直径
∴AO=OB
∵点D是BC的中点
∴BD=DC,
∴OD是△ACB的中位线,
∴OD∥AC   (2分)
∴DE⊥OD
即DE是⊙O的切线(3分)

(2)①∵AC为⊙O的切线
∴AC⊥AB
∵DE∥AB
∴DE⊥AC
∵点E是AC中点
∴点D是BC中点(4分)
∴OD⊥DE  (5分)
∵AO=OD
∴四边形AODE是正方形(6分)
∵AB=2
∴AD=
===2-2   (8分)
②由图形可知,S阴影=S正方形AODC-S扇形OAD∵S正方形=1×1=1平方单位(9分)
∵S扇形==平方单位(10分)
∴S阴影=1-平方单位(11分).
点评:此题综合运用了三角形的中位线定理、切线的判定和性质、正方形的判定和性质以及等腰直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(结果精确到0.01米)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•钦州)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:
3
,AB=10米,AE=15米.(i=1:
3
是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:
2
1.414,
3
1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

红星中学篮球课外活动小组的同学自己动手制作一副简易篮球架.如图,是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(计算结果精确到0.01米,参考数据:(sin40°≈0.588,cos40°≈0.809,tan40°≈0.727.)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知线段AB=4,点C是平面上一点(不与A,B重合),M、N分别是线段CA,CB的中点.
(1)当C在线段AB上时,如图,求MN的长;
(1)当C在线段AB的延长线上时,画出图形,并求MN长;
(2)当C在直段AB外时,画出图形,量一量,写出MN的长(不写理由)

查看答案和解析>>

同步练习册答案