已知二次函数
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.
(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式.
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。
(1)证明见解析;(2);(3)(-2,3), (3,3), (0, -3)或(1, -3)
解析试题分析:((1)根据函数与方程的关系,求出△的值,若为正数,则此函数图象与x轴总有两个交点.
(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.
试题解析:(1)因为△=
所以不论a为何实数,此函数图象与x轴总有两个交点
(2)设x1、x2是的两个根,则,,因两交点的距离是,所以
即:
变形为:
所以:
整理得:
解方程得:
又因为:a<0
所以:a=-1
所以:此二次函数的解析式为
(3)设点P的坐标为,因为函数图象与x轴的两个交点间的距离等于,所以:AB=
所以:S△PAB=
所以:
即:,则
当时,,即
解此方程得:=-2或3
当时,,即
解此方程得:=0或1
综上所述,所以存在这样的P点,P点坐标是(-2,3), (3,3), (0, -3)或(1, -3)
考点:二次函数的综合.
科目:初中数学 来源: 题型:解答题
已知:关于的二次函数y=px2-(3p+2)x+2p+2(p>0)
(1)求证:无论p为何值时,此函数图象与x轴总有两个交点;
(2)设这两个交点坐标分别为(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S关于P的函数解析式
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知△ABC的三个顶点坐标分别为A(-4,0),B(1,0),C(-2,6).
(1)求经过点A,B,C三点的抛物线解析式.
(2)设直线BC交y轴于点E,连结AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连结AD交BC于点F,求证:以A,B,F为顶点的三角形与△ABC相似,并求:.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线y=x2-2kx+3k+4.
(1)顶点在y轴上时,k的值为_________.
(2)顶点在x轴上时,k的值为_________.
(3)抛物线经过原点时,k的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
永嘉县绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我县收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出与之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数图象的顶点是(-1,2),且过点(0,).
(1)求二次函数的表达式,并在图中画出它的图象;
(2)判断点(2,)是否在该二次函数图象上;并指出当取何值时,?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,要设计一个矩形的花坛,花坛长60 m,宽40 m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10 m,横向甬道的宽度是其它各甬道宽度的2倍.设横向甬道的宽为2x m.(π的值取3)
(1)用含x的式子表示两个半圆环形甬道的面积之和;
(2)当所有甬道的面积之和比矩形面积的多36 m2时,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com