精英家教网 > 初中数学 > 题目详情
5.若a与-5互为相反数,则a的值是(  )
A.$-\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

分析 根据一个数的相反数就是在这个数前面添上“-”号,求解即可.

解答 解:若a与-5互为相反数,则a的值是5,
故选:D.

点评 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如图,△ABC内接于半径为5的圆心O,圆心O到弦BC的距离等于3,则tanA等于(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为$\frac{5}{2}$,sinA=$\frac{3}{5}$,求BH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,A、B、E为⊙O上的点,⊙O的半径OC⊥AB于点D,已知∠CEB=30°,OD=1,则⊙O的半径为(  )
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读:对于函数y=ax2+bx+c(a≠0),当t1≤x≤t2时,求y的最值时,主要取决于对称轴x=-$\frac{b}{2a}$是否在t1≤x≤t2的范围和a的正负:①当对称轴x=-$\frac{b}{2a}$在t1≤x≤t2之内且a>0时,则x=-$\frac{b}{2a}$时y有最小值,x=t1或x=t2时y有最大值;②当对称轴x=-$\frac{b}{2a}$在t1≤x≤t2之内且a<0时,则x=-$\frac{b}{2a}$时y有最大值,x=t1或x=t2时y有最小值;③当对称轴x=-$\frac{b}{2a}$不在t1≤x≤t2之内,则函数在x=t1或x=t2时y有最值.
解决问题:
设二次函数y1=a(x-2)2+c(a≠0)的图象与y轴的交点为(0,1),且2a+c=0.
(1)求a、c的值;
(2)当-2≤x≤1时,直接写出函数的最大值和最小值;
(3)对于任意实数k,规定:当-2≤x≤1时,关于x的函数y2=y1-kx的最小值称为k的“特别值”,记作g(k),求g(k)的解析式;
(4)在(3)的条件下,当“特别值”g(k)=1时,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.面积为2的正方形的边长在(  )
A.1.5和2之间B.1和1.5之间C.0.5和1之间D.0和0.5之间

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:-12016-4cos30°+($\sqrt{3}$-2)0-(-$\frac{1}{3}$)-1-|$\sqrt{12}$-4|

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点E坐标为(0,-$\sqrt{3}$),点P是对角线OC上一个动点,则EP+BP最短的最短距离为$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.初步探究
如图①,过点P的两条直线分别与⊙O相切于点A,与⊙O相交于B、C两点,且AC恰好经过圆心O.求证△PAB∽△PCA.
进一步探究
如图②若其他条件不变,但AC不经过圆心O.上述结论是否成立?请说明理由.
尝试应用
如图③,PA=3,PB=$\sqrt{3}$,⊙O的半径为2,请直接写出直线PC上一点与圆心O的最短距离.

查看答案和解析>>

同步练习册答案