【题目】观察某月的月历,回答下列问题.
(1)设十字框中间的数为,求带阴影的十字框中间的5个数的和是多少?
(2)小李一家外出游玩了5天,这5天的日期之和是75,小李一家是几号外出的?
(3)在该月的日历上用十字框框出5个数,能使这5个数的和为100吗?如果不能,请说明理由;如果能,请求出十字框中间的数.
科目:初中数学 来源: 题型:
【题目】小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym,图中的折线表示小亮在整个行走过程中y与x的函数关系.
(1)小亮行走的总路程是________m;他途中休息了________min.
(2)①当时,求y与x的函数关系式.
②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.
(1)求证:BC是⊙O的切线;
(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市在“元旦”活动期间,推出如下购物优惠方案:
①一次性购物在元(不含元)以内,不享受优惠;
②一次性购物在元(含元)以上,元(不含元)以内,一律享受九折优惠;
③一次性购物在元(含元)以上,一律享受八折优惠;
小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款( )元
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D, AC交⊙O于点E,∠BAC=45°。
(1)求∠EBC的度数;
(2)求证:BD=CD。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.
(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过点D 作于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形EBFD是矩形;
(2)若AE=3,DE=4,DF=5,求证:AF平分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x2+2x﹣8=0是倍根方程;
②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);
④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.
上述结论中正确的有( )
A. ①② B. ③④ C. ②③ D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com