精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:
①ac>0;②a-b+c<0;③当x<0时,y<0;
④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根.
其中错误的结论有( )

A.②③
B.②④
C.①③
D.①④
【答案】分析:①由二次函数y=ax2+bx+c(a≠0)的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;
②由于当x=-1时,y=a-b+c,而根据图象知道当x=-1时y<0,由此即可判定a-b+c的符号;
③根据图象知道当x<-1时抛物线在x轴的下方,由此即可判定此结论是否正确;
④根据图象与x轴交点的情况即可判定是否正确.
解答:解:①∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,
∴a<0,
∵与y轴交点在x轴上方,
∴c>0,
∴ac<0;
②∵当x=-1时,y=a-b+c,
而根据图象知道当x=-1时y<0,
∴a-b+c<0;
③根据图象知道当x<-1时抛物线在x轴的下方,
∴当x<-1,y<0;
④从图象可知抛物线与x轴的交点的横坐标都大于-1,
∴方程ax2+bx+c=0(a≠0)有两个大于-1的实数根.
故错误的有①③.
故选C.
点评:此题主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子,如:当x=1时,y>0,a+b+c>0;x=-1时,y<0,a-b+c<0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案