精英家教网 > 初中数学 > 题目详情

如图,一元二次方程x2-2x-3=0的两根x1,x2是抛物线y=ax2+bx+c与x轴的两个交点A、B的横坐标,此抛物线与y轴的正半轴交于点C.
(1)求A、B两点的坐标,并写出抛物线的对称轴;
(2)设点B关于点A的对称点为B′.问:是否存在△BCB′为等腰三角形的情形?若存在,请求出所有满足条件c的值;若不存在,请直接作否定的判断,不必说明理由.

解:(1)∵解一元二次方程x2-2x-3=0的两根x1=-1,x2=3,
∴A点坐标为(-1,0),B点坐标为(3,0),
抛物线的对称轴x=1;

(2)由已知得B′(-5,0),C(0,c)且C为y轴上的点,B′O>BO,则不可能有
CB′=CB的情形;
若BB′=BC,则有8=,则c=或-(舍去),∴c=
若BB′=B′C,则有8=,则c=或-(舍去),∴c=
∴存在满足上述条件的点.
分析:(1)易得一元二次方程的两根,那么就得到了A、B两点的坐标,抛物线的对称轴为两个交点横坐标的和的一半;
(2)注意两条边相等应分情况探讨.
点评:主要考查二次函数与一元二次方程的关系和构成三角形的判定法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一元二次方程x2+2x-3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交精英家教网点C,B的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为
 
,G点坐标为
 

(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x精英家教网轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一元二次方程x2-2x-3=0的两根x1,x2是抛物线y=ax2+bx+c与x轴的两个交点A、B的精英家教网横坐标,此抛物线与y轴的正半轴交于点C.
(1)求A、B两点的坐标,并写出抛物线的对称轴;
(2)设点B关于点A的对称点为B′.问:是否存在△BCB′为等腰三角形的情形?若存在,请求出所有满足条件c的值;若不存在,请直接作否定的判断,不必说明理由.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》常考题集(24):20.5 二次函数的一些应用(解析版) 题型:解答题

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年四川省泸州市中考数学模拟试卷(解析版) 题型:解答题

如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

查看答案和解析>>

同步练习册答案