精英家教网 > 初中数学 > 题目详情
如一个多边形的各内角的度数从小到大排列时,恰好依次增加相同的度数,其中最大的是140°,最小的是100°,求这个多边形的边数.

 

答案:
解析:

解:设多边形为n边形,依次增加x

     

解之得:n=6  这个多边形边数为6

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”.
(1)如果设正方形OGFN的边长为l,这七块部件的各边长中,从小到大的四个不同值分别为l、x1、x2、x3,那么x1=
 
;各内角中最小内角是
 
度,最大内角是
 
度;用它们拼成的一个五边形如图②,其面积是
 

(2)请用这副七巧板,既不留下一丝空自,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上;(格点图中,上下、左右相邻两点距离都为1)
(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的凸多边形,其边数不能超过8”.你认为这个结论正确吗?请说明理由.注:不能拼成与图①或②全等的多边形!
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

15、我们知道过n边形的一个顶点可以做(n-3)条对角线,这(n-3)条对角线把三角形分割成(n-2)个三角形,想一想这是为什么?如图1.
如图2,在n边形的边上任意取一点,连接这点与各顶点的线段可以把n边形分成几个三角形?
想一想,利用这两个图形,怎样证明多边形的内角和定理.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们知道过n边形的一个顶点可以做(n-3)条对角线,这(n-3)条对角线把三角形分割成(n-2)个三角形,想一想这是为什么?如图1.
如图2,在n边形的边上任意取一点,连接这点与各顶点的线段可以把n边形分成几个三角形?
想一想,利用这两个图形,怎样证明多边形的内角和定理.

查看答案和解析>>

科目:初中数学 来源:浙江省中考真题 题型:解答题

对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”。
(1)如果设正方形OGFN的边长为1,这七块部件的各边长中,从小到大的四个不同值分别为1、x1、x2、x3,那么x1=_______;各内角中最小内角是______度,最大内角是______度;用它们拼成的一个五边形如图②,其面积是_______;
(2)请用这副七巧板,既不留下一丝空自,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上(格点图中,上下、左右相邻两点距离都为1);(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的凸多边形,其边数不能超过8”,你认为这个结论正确吗?请说明理由。

注:不能拼成与图①或②全等的多边形!

查看答案和解析>>

同步练习册答案