5£®ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬A¡¢BΪxÖáÉÏÁ½µã£¬C¡¢DΪyÖáÉÏÁ½µã£¬¾­¹ýµãA£¬C£¬BµÄÅ×ÎïÏßµÄÒ»²¿·ÖC1Óë¾­¹ýµãA£¬D£¬BµÄÅ×ÎïÏßµÄÒ»²¿·ÖC2×éºÏ³ÉÒ»Ìõ·â±ÕÇúÏߣ¬ÎÒÃÇ°ÑÕâÌõ·â±ÕÇúÏß³ÆΪ¡°µ°Ïß¡±£®
ÒÑÖªµãCµÄ×ø±êΪ£¨0£¬-$\frac{3}{2}$£©£¬µãMÊÇÅ×ÎïÏßC2£ºy=mx2-2mx-3m£¨m£¼0£©µÄ¶¥µã
£¨1£©ÇóA¡¢BÁ½µãµÄ×ø±ê£»
£¨2£©Çó¾­¹ýµãA£¬C£¬BµÄÅ×ÎïÏßC1µÄº¯Êý±í´ïʽ£®
£¨3£©Ì½¾¿¡°µ°Ïß¡±ÔÚµÚËÄÏóÏÞÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃ¡÷PBCµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê¼°¡÷PBCÃæ»ýµÄ×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°ÑÅ×ÎïÏß½âÎöÕûÀí£¬Áîy=0¿ÉÇóµÃxµÄÖµ£¬Ôò¿ÉÇóµÃA¡¢BµÄ×ø±ê£»
£¨2£©ÓÉA¡¢B¡¢CµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¿ÉÇóµÃ¾­¹ýµãA¡¢B¡¢CµÄÅ×ÎïÏß½âÎöʽ£»
£¨3£©Á¬½ÓBC¡¢¹ýµãP×÷PQ¡ÎyÖᣬ½»BCÓÚµãQ£¬ÓÉB¡¢CµÄ×ø±ê¿ÉÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬Ôò¿ÉÉè³öPµã×ø±ê£¬´Ó¶ø±íʾ³öQµã×ø±ê£¬Ôò¿ÉÇóµÃPQµÄ³¤£¬´Ó¶øÓÃPµã×ø±ê±íʾ³ö¡÷PBCµÄÃæ»ý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ¿ÉÇóµÃPµã×ø±êºÍ¡÷PBCÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º
£¨1£©¡ßy=mx2-2mx-3m=m£¨x-3£©£¨x+1£©£¬ÇÒm¡Ù0£¬
¡àµ±y=0ʱ£¬¿ÉµÃm£¨x-3£©£¨x+1£©=0£¬½âµÃx1=-1£¬x2=3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£»

£¨2£©Éè¹ýA¡¢B¡¢CÈýµãµÄÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬
ÔòÓÐ$\left\{\begin{array}{l}{a-b+c=0}\\{9a+3b+c=0}\\{c=-\frac{3}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-1}\\{c=-\frac{3}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏßC1½âÎöʽΪy=$\frac{1}{2}$x2-x-$\frac{3}{2}$£»

£¨3£©Èçͼ£¬¹ýµãP×÷PQ¡ÎyÖᣬ½»BCÓÚQ£¬

ÉèÖ±ÏßBC½âÎöʽΪy=kx+s£¬ÔòÓÐ$\left\{\begin{array}{l}{3k+s=0}\\{s=-\frac{3}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{s=-\frac{3}{2}}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{1}{2}$x-$\frac{3}{2}$£¬
ÉèP£¨x£¬$\frac{1}{2}$x2-x-$\frac{3}{2}$£©£¬ÔòQ£¨x£¬$\frac{1}{2}$x-$\frac{3}{2}$£©£¬
¡àPQ=$\frac{1}{2}$x-$\frac{3}{2}$-£¨$\frac{1}{2}$x2-x-$\frac{3}{2}$£©=-$\frac{1}{2}$x2+$\frac{3}{2}$x£¬
¡àS¡÷PBC=$\frac{1}{2}$PQ•OB=$\frac{1}{2}$¡Á£¨-$\frac{1}{2}$x2+$\frac{3}{2}$x£©¡Á3=-$\frac{3}{4}$£¨x-$\frac{3}{2}$£©2+$\frac{27}{16}$£¬
¡ß-$\frac{3}{4}$£¼0£¬
¡àµ±x=$\frac{3}{2}$ʱ£¬S¡÷PBCÓÐ×î´óÖµ£¬S×î´ó=$\frac{27}{16}$£¬´ËʱPµã×Ý×ø±êΪ$\frac{1}{2}$¡Á£¨$\frac{3}{2}$£©2-$\frac{3}{2}$-$\frac{3}{2}$=-$\frac{15}{8}$£¬
´ËʱPµã×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{15}{8}$£©£®

µãÆÀ ±¾ÌâΪ¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°Ò»Ôª¶þ´Î·½³Ì¡¢´ý¶¨ÏµÊý·¨¡¢Èý½ÇÐεÄÃæ»ý¡¢¶þ´Îº¯ÊýµÄÐÔÖʼ°·½³Ì˼ÏëµÄÓ¦ÓõÈ֪ʶ£®ÔÚ£¨1£©ÖаÑÅ×ÎïÏß½âÎöʽÒòʽ·Ö½â¿ÉÇóµÃA¡¢BµÄ×ø±ê£¬ÔÚ£¨2£©ÖÐÇóµÃÅ×ÎïÏßC1µÄ½âÎöʽ£¬ÓÃPµãµÄ×ø±ê±íʾ³ö¡÷PBCµÄÃæ»ýÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÎÒÃÇ°ÑƽÃæÄÚÓëËıßÐθ÷±ß¶Ëµã¹¹³ÉµÄÈý½ÇÐζ¼ÊǵÈÑüÈý½ÇÐεĵã½Ð×öÕâ¸öËıßÐεÄÑüµã£¬ÀýÈ磺Èçͼ£¬¾ØÐÎABCDµÄ¶Ô½ÇÏß½»µãOÊǾØÐεÄÒ»¸öÑüµã£¬ÔòÈÎÒ»Õý·½ÐεÄÑüµã¹²ÓÐ9¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¡°Ò¹ÍíµÄÁ÷ÐÇ»®¹ýÌì¿ÕʱÁôÏÂÒ»ÌõÃ÷ÁÁµÄ¹âÏߣ¬Æû³µµÄÓêË¢ÔÚµ²·ç²£Á§ÉÏ»­³öÒ»¸öÉÈÃ森¡±ÉÏÃæÁ½¾ä»°Óü¸ºÎ֪ʶ¿ÉÒÔ½âÊÍΪµã¶¯³ÉÏߣ¬Ï߶¯³ÉÃ森

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èôy=5xmÊÇÕý±ÈÀýº¯Êý£¬Ôòm=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔĶÁÀí½â£®
Èô·½³Ìx2+px+q=0µÄ¸ùΪx1=a¡¢x2=b£¬Ôòa+b=-p¡¢ab=q£¬ËùÒÔx2+px+q=x2-£¨a+b£©x+ab=£¨x-a£©£¨x-b£©£¬Ò²¾ÍÊÇ˵Èç¹ûÖªµÀx2+px+q=0µÄÁ½¸ù¾Í¿ÉÒÔ¶Ôx2+px+q·Ö½âÒòʽÁË£®ÀýÈçÔÚʵÊý·¶Î§ÄÚ·Ö½âx2-x-1
½â£ºÉèx2-x-1=0½âµÃx=$\frac{1¡À\sqrt{5}}{2}$Ôòx2-x-1=£¨x-$\frac{1+\sqrt{5}}{2}$£©£¨x-$\frac{1-\sqrt{5}}{2}$£©
£¨1£©ÔÚʵÊý·¶Î§ÄÚ·Ö½â¶þ´ÎÈýÏîʽ£ºy2-3y-2
£¨2£©ÊÔ·Ö½â2x2+x-4
£¨3£©Ì½Ë÷£º¶þ´ÎÈýÏîʽax2+bx+c£¨a¡Ù0¡¢a¡¢b¡¢cÊdz£Êý£©Âú×ãʲôÌõ¼þʱ£¬ÔÚʵÊý·¶Î§ÄÚ¿É·Ö½âÒòʽ£¬Âú×ãʲôÌõ¼þʱ£¬²»ÄÜÔÚʵÊý·¶Î§ÄÚ·Ö½âÒòʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÓÐÒ»ÖÖÎݶ¥µÄ½ØÃæÐÎ״ΪÈý½ÇÐΣ¨Èçͼ£©£¬´ÓÎÝ×ÓµÄ×î¸ß´¦CµãÁ¢Ò»Ìõ´¹Ö±ÓÚºáÁºABµÄÖ§ÖùCD£¬ÒÑÖªAC=20£¬BC=15£¬DB=9£¬¡÷ABCÊÇÖ±½ÇÈý½ÇÐÎÂð£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ABÊÇ¡ÑOÖ±¾¶£¬ADÊÇÏÒ£¬¹ýBµãµÄÇÐÏßÓëADµÄÑÓ³¤Ïß½»ÓÚµãC£¬ÈôAD=CD£¬Çósin¡ÏOCAµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èô|2a-3|+£¨3b+2£©2=0£¬Ôò£¨ab£©2016=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª$\frac{x-b}{a}$=2-$\frac{x-a}{b}$£¬ÇÒa+b=2£¬Ç뻯¼ò²¢ÇóÖµÒÔÏ´úÊýʽ£º$\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}$+$\frac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸