【题目】如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF。
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
【答案】(1)证明见解析;(2) 能,理由见解析;(3)见解析.
【解析】分析:(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
(3)分两种情况讨论即可求解.
详解:(1)∵直角△ABC中,∠C=90°﹣∠A=30°.
∵CD=4t,AE=2t.
又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;
(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,AEFD是菱形;
(3)分两种情况讨论:
①当∠EDF=90°时,DE∥BC,∴∠ADE=∠C=30°,∴AD=2AE.
∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.
②当∠DEF=90°时,DE⊥EF.
∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°.
∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.
综上所述:当t=或t=12时,△DEF是直角三角形.
科目:初中数学 来源: 题型:
【题目】国际足球比赛对足球的质量有严格的要求,比赛所用足球上标有:430±20(g).请问:
(1)比赛所用足球的标准质量是多少?符合比赛所用足球质量的合格范围是多少?
(2)组委会随机抽查了8只足球的质量,高于标准质量记为正,低于标准质量记为负,结果分别是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求这8只足球质量的合格率.
(足球质量的合格率=)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先观察下列等式,再完成题后问题:
,,
①请你猜想:=________.
②若a、b为有理数,且,
求:+…+的值.
(2)探究并计算:+++…+
(3)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的正方形,再把面积为的正方形等分成两个面积为的矩形.如此进行下去,试利用图形揭示的规律计算:++++++.(直接写答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点距离AB=|a﹣b|.已知数轴上两点A,B对应的数分别为-1,3.点P为数轴上一动点,其对应的数为x,A,B两点之间的距离是 .设点P在数轴上表示的数为x,则x与-4之间的距离表示为 .
.若点P到点A、点B的距离相等,则点P对应的数为 .
若点P到点A、点B的距离之和为8,则点P对应的数为 .
现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向左运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC⊥MN,在直线MN上从点C前进一段路程到达点D,测得∠ADC=30°,∠BDC=60°,求这条河的宽度.( ≈1.732,结果保留三个有效数字).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形。若,AB=2,则图中阴影部分的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2-2x-3与x轴相交于A、B两点,其顶点为M,将此抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象.如图,当直线y=-x+n与此图象有且只有两个公共点时,则n的取值范围为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元. ①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com