精英家教网 > 初中数学 > 题目详情
如图,已知AC切⊙O于A,AB为直径,C为⊙O外一点,BC交⊙O于点D,AC=6,BD=5,连接AD.
(1)证明:△CAD∽△CBA;(2)求线段DC的长.

【答案】分析:(1)根据有两组角对应相等的两个三角形相似可得到△CAD∽△CBA;
(2)根据相似三角形的对应边成比例可求得CD的长.
解答:证明:(1)∵AB是直径,
∴∠ADB=90°.
又∵CA是切线,
∴BA⊥AC,∴∠BAC=90°.
∴∠BAC=∠CDA=90°.
又∵∠BCA=∠DCA,
∴△CAD∽△CBA.

(2)由(1)知△CAD∽△CBA,

设DC=x,

即x2+5x-36=0,
解得x=4或x=-9(舍去),
∴CD的长为4.
点评:此题主要考查相似三角形的判定及切线的性质的理解及运用,同时也考查了因式分解法解一元二次方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AC切⊙O于C点,CP为⊙O的直径,AB切⊙O于D与CP的延长线交于B点,若AC=PC.
求证:(1)BD=2BP;(2)PC=3BP.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AC切⊙O于A,AB为直径,C为⊙O外一点,BC交⊙O于点D,AC=6,BD=5,连接AD.
(1)证明:△CAD∽△CBA;(2)求线段DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知AC切⊙O于A,AB为直径,C为⊙O外一点,BC交⊙O于点D,AC=6,BD=5,连接AD.
(1)证明:△CAD∽△CBA;(2)求线段DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知AC切⊙O于C点,CP为⊙O的直径,AB切⊙O于D与CP的延长线交于B点,若AC=PC.
求证:(1)BD=2BP;(2)PC=3BP.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(1999•天津)如图,已知AC切⊙O于C点,CP为⊙O的直径,AB切⊙O于D与CP的延长线交于B点,若AC=PC.
求证:(1)BD=2BP;(2)PC=3BP.

查看答案和解析>>

同步练习册答案