精英家教网 > 初中数学 > 题目详情
21、已知a、b、c满足a-b=8,ab+c2+16=0,则2a+b+c=
4
分析:本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由a-b=8可得a=b+8;将其代入ab+c2+16=0得:b2+8b+c2+16=0;此时可发现b2+8b+16正好符合完全平方公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.
解答:解:因为a-b=8,
所以a=b+8.(1分)
又ab+c2+16=0,
所以(b+8)b+c2+16=0.(2分)
即(b+4)2+c2=0.
又(b+4)2≥0,c2≥0,
则b=-4,c=0.(4分)
所以a=4,(5分)
所以2a+b+c=4.(6分)
点评:本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知a、b、c满足a-b=8,ab+c2+16=0,求2a+b+c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,若x,y满足(x+3)2+
y-2
=0
,试求2x+3y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x、y、z满足x2-4x+y2+6y+
z+1
+13=0,求代数式(xy)z的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)分解因式:x2(x-y)+(y-x).                        
(2)计算;20092-2008×2010
(3)计算:a2÷b×
1
b
÷c×
1
c
÷d×
1
d
    
(4)已知a、b、c满足
b+c
a
=
c+a
b
=
b+a
c
=m
.求m.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)先化简,后求值:a+(5a-3b)-2(a-2b),其中a=2,b=-3.
(2)已知m,x,y满足下列关系式:
35
(x-5)2+|m-2|=0
,-3a2by+1与a2b3是同类项,求代数式(2x2-3xy+6y2)-m(3x2-xy+9y2)的值.

查看答案和解析>>

同步练习册答案