精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发.设甲与A地相距y(km),乙与A地相距y(km),甲离开A地时间为x(h),y、yx之间的函数图象如图所示.

(1)甲的速度是   km/h.

(2)请分别求出y、yx之间的函数关系式.

(3)当乙与A地相距240km时,甲与B地相距多少千米?

【答案】(1)60.(2)y=90x﹣90;y=60x.()220km

【解析】

1)根据图象确定出甲的路程与时间即可求出速度

2)利用待定系数法即可解决问题

3求出乙距A240km时的时间加上1再乘以甲的速度即可得到结果

1)根据图象得360÷6=60km/h

故答案为:60

2)当1x5y=kx+b把(10)与(5360)代入得解得k=90b=﹣90y=90x90

0x6y=mx把(6360)代入得到m=60y=60x

3∵乙与A地相距240km且乙的速度为360÷51)=90km/h∴乙用的时间是240÷90=h则甲与A地相距60×+1)=220km

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1),AE、F、C在一条直线上,AE=CF,过E、F分别作DEAC,BFAC,若AB=CD,试证明BD平分EF,若将DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】光明中学八年级甲、乙、丙三个班中,每班的学生人数都为40名,某次数学考试的成绩统计如图:(每组分数含最小值,不含最大值)

丙班数学成绩频数统计表

分数

50~60

60~70

70~80

80~90

90~100

人数

1

4

15

11

9

 根据上图及统计表提供的信息,则80~90分这一组人数最多的班是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.

(1)在图中画出与ABC关于直线l成轴对称的AB′C′;

(2)三角形ABC的面积为   

(3)在直线l上找一点P,使PB+PC的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠B=60°,ABC的角平分线AD、CE相交于点O,

(1)求∠AOC的度数;

(2)求证:OE=OD;

(3).猜测AE,CD,AC三者的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线经过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴.

(1)求抛物线的解析式;
(2)如图2,过点B(0,﹣ )作x轴的平行线l,点C在直线l上,点D在y轴左侧的抛物线上,连接DB,以点D为圆心,以DB为半径画圆,⊙D与x轴相交于点M,N(点M在点N的左侧),连接CN,当MN=CN时,求锐角∠MNC的度数;

(3)如图3,在(2)的条件下,平移直线CN经过点A,与抛物线相交于另一点E,过点A作x轴的平行线m,过点(﹣3,0)作y轴的平行线n,直线m与直线n相交于点S,点R在直线n上,点P在EA的延长线上,连接SP,以SP为边向上作等边△SPQ,连接RQ,PR,若∠QRS=60°,线段PR的中点K恰好落在抛物线上,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⊙O是△ABC的外接圆,AB是直径,过 的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.
(1)如图1,求证:AG=CP;

(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;

(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数

为何值时,yx的增大而减小?

为何值时,直线与y轴的交点在x轴下方?

为何值时,直线位于第二、三、四象限?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC,若CE=5,则BC等于(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案