【题目】如图,矩形ABCD中,AB=8,BC=12,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出DP满足的条件: .
【答案】(1)见解析;(2)存在,满足条件的x的值为6或;(3)DP=或10<DP≤12
【解析】
(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.
(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围,从而得出DP的范围.
(1)证明:∵矩形ABCD,
∴∠ABE=90°,AD∥BC,
∴∠PAF=∠AEB,
又∵PF⊥AE,
∴∠PFA=90°=∠ABE,
∴△PFA∽△ABE.
(2)解:分二种情况:
①若△EFP∽△ABE,如图1,
则∠PEF=∠EAB,
∴PE∥AB,
∴四边形ABEP为矩形,
∴PA=EB=6,即x=6.
②如图2,若△PFE∽△ABE,
则∠PEF=∠AEB,
∵AD∥BC
∴∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点,
Rt△ABE中,AB=8,BE=6,
∴AE===10,
∴EF=,
∵△PFE∽△ABE,
∴,
∴,
∴PE=,
∴满足条件的x的值为6或.
(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,
∵AP=x,
∴PD═DG=12﹣x,
∵∠DAG=∠AEB,∠AGD=∠B=90°,
∴△AGD∽△EBA,
∴,
∴,
∴x=,
∴,
当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,
此时PD=DE=10,
故答案为:DP=或10<DP≤12.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知∠ACB=90°,∠A=30°,BC=6,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=_____时,平行四边形CDEB为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.
(1)求证:BD平分∠ABC;
(2)连接EC,若∠A=30°,DC,求EC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,点为上的一点,在同侧作正方形,正方形分别为对角线的中点,连结当点沿着线段由点向点方向上移动时,四边形的面积变化情况为( )
A.不变B.先减小后增大
C.先增大后减小D.一直减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.
请根据以上信息解答下列问题:
(1)填空:a= ,b= ,并把条形统计图补全;
(2)请估计该地区此题得满分(即8分)的学生人数;
(3)已知难度系数的计算公式为L=,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区游泳馆夏季推出两种收费方式.方式一:先购买会员证,会员证200元,只限本人当年使用,凭证游泳每次需另付费10元:方式二:不购买会员证,每次游泳需付费20元.
(1)若甲计划今年夏季游泳的费用为500元,则选择哪种付费方式游泳次数比较多?
(2)若乙计划今年夏季游泳的次数超过15次,则选择哪种付费方式游泳花费比较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。
(1)求购买一个足球、一个篮球各需多少元?
(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上有一点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x与函数y=(x>0)的图象交于点A(1,2).
(1)求m的值;
(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y=(x>0)的图象交于点C,与x轴交于点D.
①若点C是线段BD的中点时,则点C的坐标是________,b的值是________;
②当BC>BD时,直接写出b的取值范围________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com