11£®³¤·½ÐÎABOCÈçͼ·ÅÖÃÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬O£¨0£¬0£©¡¢B£¨-6£¬0£©¡¢C£¨0£¬4£©£®
£¨1£©Ö±½Óд³öAµã×ø±ê£¨-6£¬4£©£»
£¨2£©Èô½«³¤·½ÐÎABOCÏòÏÂƽÒÆ2¸öµ¥Î»£¬ÔÙÏò×óƽÒÆ2¸öµ¥Î»µÃµ½³¤·½ÐÎA¡äB¡äO¡äC¡ä£¬ÔÚͼÖл­³öƽÒƺóµÄͼÐβ¢Çó³ö³¤·½ÐÎABOCÓ볤·½ÐÎA¡äB¡äO¡äC¡äÖصþ²¿·ÖµÄÃæ»ý£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôEΪB¡äO¡äÖе㣬ÓÐÒ»¶¯µãP´ÓO¡ä³ö·¢£¬ÒÔ1¸öµ¥Î»/ÃëµÄËٶȣ¬ÑØO¡ä¡úC¡ä¡úA¡äÏòÖÕµãA¡äÔ˶¯£¬Ô˶¯Ê±¼äΪt£¬ÎÊ£ºÊÇ·ñ´æÔÚtÖµ£¬Ê¹µÃÈý½ÇÐÎA¡äEPµÄÃæ»ýÊÇ8£¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý¾ØÐεÄÐÔÖÊ¡¢½áºÏͼÐνâ´ð£»
£¨2£©¸ù¾ÝƽÒƹæÂÉ×÷³öͼÐΣ¬¸ù¾Ý¾ØÐεÄÃæ»ý¹«Ê½¼ÆËã¼´¿É£»
£¨3£©·ÖµãPÔÚÏ߶ÎO¡äC¡äÉϺ͵ãPÔÚÏ߶ÎA¡äC¡äÉÏÁ½ÖÖÇé¿ö£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©¸ù¾Ý¾ØÐεÄÐÔÖÊ¿ÉÖª£¬Aµã×ø±êΪ£¨-6£¬4£©£¬
¹Ê´ð°¸Îª£º£¨-6£¬4£©£»
£¨2£©Æ½ÒƺóµÄͼÐÎÈçͼ1Ëùʾ£¬
³¤·½ÐÎABOCÓ볤·½ÐÎA¡äB¡äO¡äC¡äÖصþ²¿·ÖµÄÃæ»ýΪ£º4¡Á2=8£»
£¨3£©µ±µãPÔÚÏ߶ÎO¡äC¡äÉÏÒƶ¯Ê±£¬
ÉèO¡äP=x£¬ÔòC¡äP=4-x£¬
ÓÉÌâÒâµÃ£¬4¡Á6-$\frac{1}{2}$¡Á3¡Á4-$\frac{1}{2}$¡Á3¡Áx-$\frac{1}{2}$¡Á6¡Á£¨4-x£©=8£¬
½âµÃ£¬x=$\frac{4}{3}$£¬
Ôòt=$\frac{4}{3}$£¬
µ±µãPÔÚÏ߶ÎA¡äC¡äÉÏÒƶ¯Ê±£¬
ÉèA¡äP¡ä=y£¬
ÓÉÌâÒâµÃ£¬$\frac{1}{2}$¡Áy¡Á4=8£¬
½âµÃ£¬y=4£¬
ÔòA¡äP¡ä=4£¬P¡äC¡ä=2£¬
¡àt=6£¬
´ð£ºµ±t=$\frac{4}{3}$»ò6Ãëʱ£¬Èý½ÇÐÎA¡äEPµÄÃæ»ýÊÇ8£¬´ËʱµãPµÄ×ø±êΪ£¨-2£¬-$\frac{2}{3}$£©»ò£¨-4£¬2£©£®

µãÆÀ ±¾Ì⿼²éµÄÊǾØÐεÄÐÔÖÊ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½ÒÔ¼°×ø±êÓëͼÐεÄÌØÕ÷£¬ÕÆÎÕ¾ØÐεÄÐÔÖÊÊǽâÌâµÄ¹Ø¼ü£¬½â´ðʱ£¬×¢Òâ·ÖÇé¿öÌÖÂÛ˼ÏëµÄÁé»îÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÓÐAÐÍ¡¢BÐÍ¡¢CÐÍÈýÖÖ²»Í¬µÄÖ½°å£¬ÆäÖÐAÐÍ£º±ß³¤ÎªaÀåÃ×µÄÕý·½ÐΣ»BÐÍ£º³¤ÎªaÀåÃ×£¬¿íΪ1ÀåÃ׵ij¤·½ÐΣ»CÐÍ£º±ß³¤Îª1ÀåÃ×µÄÕý·½ÐΣ®
£¨1£©AÐÍ2¿é£¬BÐÍ4¿é£¬CÐÍ4¿é£®´Ëʱֽ°åµÄ×ÜÃæ»ýΪ£¨2a2+4a+4£©Æ½·½ÀåÃ×£»
¢Ù´ÓÕâ10¿éÖ½°åÖÐÄõô1¿éAÐÍÖ½°å£¬Ê£ÏµÄÖ½°åÔÚ²»ÖصþµÄÇé¿öÏ£¬¿ÉÒÔ½ôÃܵÄÅųöÒ»¸ö´óÕý·½ÐΣ®Õâ¸ö´óÕý·½Ðεı߳¤Îª£¨a+2£©ÀåÃ×£»
¢Ú´ÓÕâ10¿éÖ½°åÖÐÄõô2¿éͬÀàÐ͵ÄÖ½°å£¬Ê¹µÃʣϵÄÖ½°åÔÚ²»ÖصþµÄÇé¿öÏ£¬¿ÉÒÔ½ôÃܵÄÅųöÁ½¸öÏàͬÐÎ×´µÄ´óÕý·½ÐΣ¬ÇëÎÊÄõôµÄÊÇ2¿éÄÄÖÖÀàÐ͵ÄÖ½°å£¿´Ëʱ´óÕý·½ÐεÄÃæ»ýÊǶàÉÙƽ·½ÀåÃ×£¿£¨¼ÆËã˵Ã÷£©
£¨2£©AÐÍ12¿é¡¢BÐÍ12¿é¡¢CÐÍ4¿é£¬´ÓÕâ28¿éÖ½°åÖÐÄõô1¿éÖ½°å£¬Ê¹µÃʣϵÄÖ½°åÔÚ²»ÖصþµÄÇé¿öÏ£¬¿ÉÒÔ½ôÃܵÄÅųöÈý¸öÏàͬÐÎ×´µÄ´óÕý·½ÐΣ¬ÇëÖ±½Óд³ö´óÕý·½Ðεı߳¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®£¨1£©ÒÑÖª£¬Èçͼ1£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÕýÈý½ÇÐΣ¬µãPΪÁÓ»¡BCÉÏÒ»¶¯µã£¬ÇóÖ¤£ºPA=PB+PC£®
£¨2£©Èçͼ2£¬ËıßÐÎABCDÊÇ¡ÑOµÄÄÚ½ÓÕý·½ÐΣ¬µãPΪÁÓ»¡BCÉÏÒ»¶¯µã£¬ÇóÖ¤£ºPA=PC+$\root{2}{2}$PB£®
£¨3£©Èçͼ3£¬Áù±ßÐÎABCDEFÊÇ¡ÑOµÄÄÚ½ÓÕýÁù±ßÐΣ¬µãPΪÁÓ»¡BCÉÏÒ»¶¯µã£¬Çë̽¾¿PA¡¢PB¡¢PCÈýÕßÖ®¼äÓкÎÊýÁ¿¹Øϵ£¬²¢¸øÓèÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ò»¸öÕýÊýµÄÁ¢·½¸ùÓÐÁ½¸ö£¬ËüÃÇ»¥ÎªÏà·´Êý
B£®¸ºÊýûÓÐÁ¢·½¸ù
C£®ÈκÎÒ»¸öÊýµÄÁ¢·½¸ù¶¼ÊǷǸºÊý
D£®ÕýÊýÓÐÒ»¸öÕýµÄÁ¢·½¸ù£¬¸ºÊýÓÐÒ»¸ö¸ºµÄÁ¢·½¸ù

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®½âÏÂÁз½³Ì£®
£¨1£©4x-2£¨x-3£©=x£»
£¨2£©$\frac{2x-1}{3}$=$\frac{x+2}{4}$-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬BC=$\sqrt{7}$£¬AC=$\sqrt{21}$£¬Ôò¡ÏA=30¡ã£¬¡ÏB=60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÏÈ»¯¼ò£®ÔÙÇóÖµ£º5£¨x+y£©£¨x-y£©-2£¨x+y£©2-3£¨x-y£©2£¬ÆäÖÐx=3£¬y=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èôx=$\frac{1}{2-\sqrt{3}}$£¬y=$\frac{1}{2+\sqrt{3}}$£¬Çó£º
£¨1£©x+yºÍxyµÄÖµ£»
£¨2£©Çó4x2-3xy+y2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®·Ö½âÒòʽ£ºm2-5m=m£¨m-5£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸