精英家教网 > 初中数学 > 题目详情

已知二次函数y=-2x2+8x-6.
(1)用配方法求这个二次函数图象的顶点坐标和对称轴;
(2)画出这个函数的大致图象,指出函数值不小于0时x的取值范围.

解:(1)y=-2x2+8x-6=-2(x2-4x)-6=-2(x-2)2+2,
这个二次函数图象的顶点坐标为(2,2),对称轴为直线x=2.

(2)图象如下:

函数值不小于0时,1≤x≤3.
分析:(1)用配方法将抛物线的一般式转化为顶点式,可求顶点坐标和对称轴;
(2)准确画出抛物线与x轴的交点,开口方向,函数值小于0,图象在x轴的下方,观察图象得出x的取值范围.
点评:主要考查了对称点的特点和求抛物线的顶点坐标的方法.渗透数形结合的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是(  )
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象经过点(0,3),顶点坐标为(1,4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;
③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根;⑤2a+b=0.其中,正确的说法有
②④⑤
②④⑤
.(请写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,已知A点坐标为(-1,0),且对称轴为直线x=2,则B点坐标为
(5,0)
(5,0)

查看答案和解析>>

同步练习册答案