精英家教网 > 初中数学 > 题目详情
(1)如图1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:AE=BF;
(2)为响应市人民政府“形象胜于生命”的号召,在甲建筑物上从A点到E点挂一长为30m的宣传条幅(如图2),在乙建筑物的顶部D点测得顶端A点的仰角为45°,测得条幅底端E点的俯角为30°,求底部不能直接到达的两建筑物之间的水平距离(答案可带根号).
分析:(1)首先根据∠AOB=90°,∠EOF=90°可以推出∠2=∠3.再根据△AOB是等腰三角形,△EOF是等腰三角形,可得AO=BO,EO=FO,进而可以利用SAS证明△AOE≌△BOF,根据全等三角形的性质可得AE=BF;
(2)设BC的距离为x,当E点与B点重合时的,可以求得BC的临界距离,根据∠ADF和∠BDF可以求得AF与DF、BF与DF的关系,即可求得DF的值,即可解题.
解答:(1)证明:∵∠AOB=90°,∠EOF=90°,
∴∠AOB-∠1=∠EOF-∠1,
即∠2=∠3,
∵△AOB是等腰三角形,△EOF是等腰三角形,
∴AO=BO,EO=FO,
在△AOE和△BOF中
EO=FO
∠2=∠3
AO=BO

∴△AOE≌△BOF(SAS),
∴AE=BF;

(2)解:∵∠ADF=45°,
∴AF=DF•tan45°=DF,
∵∠EDF=30°,
∴EF=DF•tan30°=
3
3
DF,
∴AE=AF+EF=DF+
3
3
DF=30,
∴DF=(45-15
3
)米,
即BC=(45-15
3
)米.
答:底部不能直接到达的两建筑物之间的水平距离BC长为(45-15
3
)米.
点评:本题考查了解直角三角形的应用中仰角与俯角问题,解答道题的关键是将实际问题转化为数学问题,解直角三角形即可求出.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网下列说法:
(1)如图1,已知PA=PB,则PO是线段AB的垂直平分线;
(2)对于反比例函数y=
2
x
,(x1,y1),(x2,y2)是其图象上两点,若x1<x2,则y1>y2; 
(3)对角线互相垂直平分的四边形是菱形;
(4)如图2,在△ABC中,∠A=30°,BC=2,则AC=4;
(5)一组对边平行的四边形是梯形;    
(6)y=
k
x
是反比例函数;
(7)若一个等腰三角形的两边长为2和3,那么它的周长为7,
其中正确的有(  )个.
A、0B、1C、2D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知双曲线y=
k
x
(k>0)
与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为
 
;若点A的横坐标为m,则点B的坐标可表示为
 

(2)如图2,过原点O作另一条直线l,交双曲线y=
k
x
(k>0)
于P,Q两点,点P在第一象限.
①说明四边形APBQ一定是平行四边形;
②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知正方形ABCD,将一个45度角∝的顶点放在D点并绕D点旋转,角的两边分别交AB边和BC边于点E和F,连接EF.求证:EF=AE+CF
(1)小明是这样思考的:延长BC到G,使得CG=AE,连接DG,先证△DAE≌△DCG,再证△DEF≌△DGF,请你借助图2,按照小明的思路,写出完整的证明思路.
(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF的面积都等于6,求EF的长②将角∝绕D点继续旋转,使得角∝的两边分别和AB边延长线、BC边的延长线交于E和F,如图3所示,猜想EF、AE、CF三线段之间的数量关系并给予证明.请你帮忙解决.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,且AB=CD.
(1)试问OE=0F吗?请说明理由.
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.

查看答案和解析>>

同步练习册答案