精英家教网 > 初中数学 > 题目详情

【题目】如图,点P是正方形ABCD内一点,点P到点ABD的距离分别为1,2.△ADP沿点A旋转至ABP,连接PP,并延长APBC相交于点Q.

(1)求证:APP是等腰直角三角形;

(2)BPQ的大小.

【答案】(1)证明见解析;(2)BPQ=45°.

【解析】

(1)根据旋转的性质可知,APD≌△AP′B,所以AP=AP′,PAD=P′AB,因为∠PAD+PAB=90°,所以∠P′AB+PAB=90°,即∠PAP′=90°,故APP′是等腰直角三角形;

(2)根据勾股定理逆定理可判断PP′B是直角三角形,再根据平角定义求出结果.

(1)证明:∵四边形ABCD为正方形,

AB=AD,BAD=90°,

∵△ADP沿点A旋转至ABP′,

AP=AP′,PAP′=DAB=90°,

∴△APP′是等腰直角三角形;

(2)解:∵△APP′是等腰直角三角形,

PP′=PA=APP′=45°,

∵△ADP沿点A旋转至ABP′,

PD=P′B=

PP′B中,PP′=,PB=2,P′B=

2+(22=(2

PP′2+PB2=P′B2

∴△PP′B为直角三角形,∠P′PB=90°,

∴∠BPQ=180°﹣APP′﹣P′PB=180°﹣45°﹣90°=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,且DE=DC.
(1)求证:△BDE≌△ADC;
(2)若BC=8.4,tanC= ,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(
A.a3a2=a6
B.(a23=a5
C.23=﹣6
D.20=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(原题)已知直线ABCD,点P为平行线AB,CD之间的一点.如图1,若∠ABP=50°,∠CDP=60°,BE平分ABP,DE平分∠CDP,∠BED的度数

(探究)如图2,当点P在直线AB的上方时,若∠ABP=α,∠CDP=β,∠ABP和CDP的平分线交于点E1,∠ABE1∠CDE1的角平分线交于点E2,∠ABE2∠CDE2的角平分线交于点E3,…以此类推,求∠En的度数.

(变式)如图3,ABP的角平分线的反向延长线和CDP的补角的角平分线交于点E,试猜想P与E的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1的解析式为y=﹣x+2,l1x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A,

(1)求点C的坐标及直线l2的解析式;

(2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形,,过点,垂足为,并延长,使联结.

(1)求证:四边形是平行四边形。

(2)联结,如果

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一根长为1米的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复截取,则第n(n为正整数)次截取后,此木杆剩下的长度为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了考查一种零件的加工精度,从中抽出40只进行检测,其尺寸数据如下(单位:微米):

161,165,164,166,160,158,163,162,168,159,

147,165,167,151,164,159,152,159,149,172,

162,157,162,169,156,164,163,157,163,165,

173,159,157,169,165,154,153,163,168,169.

试列出样本频数及频率分布表,绘制频数分布直方图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:

类别

彩电

冰箱

洗衣机

进价(元/台)

2000

1600

1000

售价(元/台)

2300

1800

1100

若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.
(1)商店至多可以购买冰箱多少台?
(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?

查看答案和解析>>

同步练习册答案