【题目】如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,2,.△ADP沿点A旋转至△ABP′,连接PP′,并延长AP与BC相交于点Q.
(1)求证:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.
【答案】(1)证明见解析;(2)∠BPQ=45°.
【解析】
(1)根据旋转的性质可知,△APD≌△AP′B,所以AP=AP′,∠PAD=∠P′AB,因为∠PAD+∠PAB=90°,所以∠P′AB+∠PAB=90°,即∠PAP′=90°,故△APP′是等腰直角三角形;
(2)根据勾股定理逆定理可判断△PP′B是直角三角形,再根据平角定义求出结果.
(1)证明:∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∵△ADP沿点A旋转至△ABP′,
∴AP=AP′,∠PAP′=∠DAB=90°,
∴△APP′是等腰直角三角形;
(2)解:∵△APP′是等腰直角三角形,
∴PP′=PA=,∠APP′=45°,
∵△ADP沿点A旋转至△ABP′,
∴PD=P′B=,
在△PP′B中,PP′=,PB=2,P′B=,
∵()2+(2)2=()2,
∴PP′2+PB2=P′B2,
∴△PP′B为直角三角形,∠P′PB=90°,
∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,且DE=DC.
(1)求证:△BDE≌△ADC;
(2)若BC=8.4,tanC= ,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(原题)已知直线AB∥CD,点P为平行线AB,CD之间的一点.如图1,若∠ABP=50°,∠CDP=60°,BE平分∠ABP,DE平分∠CDP,求∠BED的度数.
(探究)如图2,当点P在直线AB的上方时,若∠ABP=α,∠CDP=β,∠ABP和∠CDP的平分线交于点E1,∠ABE1与∠CDE1的角平分线交于点E2,∠ABE2与∠CDE2的角平分线交于点E3,…以此类推,求∠En的度数.
(变式)如图3,∠ABP的角平分线的反向延长线和∠CDP的补角的角平分线交于点E,试猜想∠P与∠E的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A,
(1)求点C的坐标及直线l2的解析式;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有一根长为1米的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复截取,则第n(n为正整数)次截取后,此木杆剩下的长度为米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了考查一种零件的加工精度,从中抽出40只进行检测,其尺寸数据如下(单位:微米):
161,165,164,166,160,158,163,162,168,159,
147,165,167,151,164,159,152,159,149,172,
162,157,162,169,156,164,163,157,163,165,
173,159,157,169,165,154,153,163,168,169.
试列出样本频数及频率分布表,绘制频数分布直方图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:
类别 | 彩电 | 冰箱 | 洗衣机 |
进价(元/台) | 2000 | 1600 | 1000 |
售价(元/台) | 2300 | 1800 | 1100 |
若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.
(1)商店至多可以购买冰箱多少台?
(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com