精英家教网 > 初中数学 > 题目详情
2.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,并根据检测数据绘制了如图1、图2两幅不完整的统计图.
(1)抽查D厂家零件数的百分比为25%,扇形统计图中D厂家对应的圆心角为90°;
(2)通过计算说明合格率排在前两名的是哪两个厂家;
(3)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(2)中两个厂家同时被选中的概率.

分析 (1)根据百分比之和为1可计算出D厂的零件比例,D厂家对应的圆心角为360°×所占比例;
(2)计算出各厂的合格率后,进一步比较得出答案即可;
(3)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.

解答 解:(1)抽查D厂家零件数的百分比为1-35%-20%-20%=25%,
扇形统计图中D厂家对应的圆心角为360°×25%=90°,
故答案为:25、90°;

(2)A厂家合格率=630÷(2000×35%)=90%,
B厂家合格率=370÷(2000×20%)=92.5%,
C厂家合格率=95%,
D厂家合格率470÷500=94%,
合格率排在前两名的是C、D两个厂家.


(3)根据题意画树形图如下:

共有12种情况,选中C、D的有2种,
则P(选中C、D)=$\frac{2}{12}$=$\frac{1}{6}$.

点评 本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,矩形AOBC的两条边OA,OB的长是方程x2-18x+80=0的两根,其中OA<OB,沿直线AD将矩形折叠,使点C与y轴上的点E重合.
(1)求A,B两点的坐标;
(2)求直线AD的解析式;
(3)若点P在y轴上,平面内是否存在点Q,使以A,D,P,Q为顶点的四边形为矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.抛物线y=-5x2+20x的顶点坐标为(2,20).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,其中点B的坐标为(1,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是-1<k<$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在?ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=4,将△ABC沿直线AC翻折180°后与原图形在同一平面内,若点B的落点记为B′,则DB′的长为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,已知△ABC的两个外角平分线DA、DC相交于点D,过D分别作DE⊥AB于E,DF⊥BC于F.
(1)若∠B=80°,则∠ADC=50°.
(2)证明:DE=DF
(3)探究线段AE、AC、CF之间的数量关系.
①如图2,小王同学探究此问题的方法是:延长CF到点G,使FG=AE,连结DG,由(2)知,DE=DF,从而证明△ADE≌△GDF,再证明△ADC≌△GDC,可得出结论,他的结论应是AC=AE+CF.②你还有其他方法证明①中的结论吗?请利用“备用图”说明.
②你还有其他方法证明①中的结论吗?请利用“备用图”说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知多项式x3-3xy2-4的常数项是a,次数是b
(1)直接写出a,b,并将这两个数在数轴上所对应的点A、B表示出来;
(2)数轴上A、B之间的距离记作|AB|,定义:|AB|=|a-b|,设点P在数轴上对应的数为x,当|PA|+|PB|=13时,直接写出x的值6或-7;
(3)若点A、点B同时沿数轴向正方向运动,点A的速度是点B的2倍,且3秒后,$\frac{3}{2}$AO=OB,求点B的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在直径为AB的⊙O中,C,D是⊙O上的两点,∠AOD=58°,CD∥AB,则∠ABC的度数为61°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为$\frac{60}{13}$.

查看答案和解析>>

同步练习册答案