【题目】已知,抛物线(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.
(1)求抛物线的解析式及顶点D的坐标;
(2)求证:直线DE是△ACD外接圆的切线;
(3)在直线AC上方的抛物线上找一点P,使,求点P的坐标;
(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.
【答案】(1),顶点D(1,4);(2)证明见解析;(3)P(,)或(,);(4)(0,0)或(9,0)或(0,﹣).
【解析】
试题(1)由对称轴求出B的坐标,由待定系数法求出抛物线解析式,即可得出顶点D的坐标;
(2)由勾股定理和勾股定理的逆定理证出△ACD为直角三角形,∠ACD=90°.得出AD为△ACD外接圆的直径,再证明△AED为直角三角形,∠ADE=90°.得出AD⊥DE,即可得出结论;
(3)求出直线AC的解析式,再求出线段AD的中点N的坐标,过点N作NP∥AC,交抛物线于点P,求出直线NP的解析式,与抛物线联立,即可得出答案;
(4)由相似三角形的性质和直角三角形的性质即可得出答案.
试题解析:(1)∵抛物线的对称轴是直线x=1,点A(3,0),∴根据抛物线的对称性知点B的坐标为(﹣1,0),OA=3,将A(3,0),B(﹣1,0)代入抛物线解析式中得:,解得:,∴抛物线解析式为;当x=1时,y=4,∴顶点D(1,4).
(2)当=0时,∴点C的坐标为(0,3),∴AC= =,CD==,AD= =,∴AC2+CD2=AD2,∴△ACD为直角三角形,∠ACD=90°,∴AD为△ACD外接圆的直径,∵点E在 轴C点的上方,且CE=,∴E(0,),∴AE= =,DE= =,∴DE2+AD2=AE2,∴△AED为直角三角形,∠ADE=90°,∴AD⊥DE,又∵AD为△ACD外接圆的直径,∴DE是△ACD外接圆的切线;
(3)设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为y=﹣x+3,∵A(3,0),D(1,4),∴线段AD的中点N的坐标为(2,2),过点N作NP∥AC,交抛物线于点P,设直线NP的解析式为y=﹣x+c,则﹣2+c=2,解得:c=4,∴直线NP的解析式为y=﹣x+4,由y=﹣x+4,y=﹣x2+2x+3联立得:﹣x2+2x+3=﹣x+4,解得:x=或x=,∴y=,或y=,∴P(,)或(,);
(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);
②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);
③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣);
综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣).
科目:初中数学 来源: 题型:
【题目】如图,在中,,是边上任意一点(点与点、不重合),以为一直角边在的外部作,,连接,.
(1)在图中,若,,现将图中的绕着点顺时针旋转锐角,得到图,那么线段,之间有怎样的关系,写出结论,并说明理由;
(2)在图中,若,,,,现将图中的绕着点顺时针旋转锐角,得到图,连接、.
①求证:;
②计算:的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B在双曲线(x<0)上,连接OA、AB,以OA、AB为边作OABC.若点C恰落在双曲线(x>0)上,此时OABC的面积为( ).
A.B.C.D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.
(1)求抛物线的解析式及顶点D的坐标;
(2)求证:直线DE是△ACD外接圆的切线;
(3)在直线AC上方的抛物线上找一点P,使,求点P的坐标;
(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为( )
A.6B.9C.12D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.
(1)求k的值;
(2)直接写出点B的坐标,并求直线AB的解析式;
(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车销售商推出分期付款购车促销活动,交首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款万元,个月结清.与的函数关系如图所示,根据图像回答下列问题:
(1)确定与的函数解析式,并求出首付款的数目;
(2)王先生若用20个月结清,平均每月应付多少万元?
(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ADBC内接于⊙O,AD平分∠EDC,AE∥BC交直线BD于E.
(1)求证:AE是⊙O的切线;
(2)若CD为直径,tan∠ADE=2,求sin∠BDC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com