精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交
BC
于D.
(1)请写出四个不同类型的正确结论;
AC⊥BC
AC⊥BC
;②
CE=BE
CE=BE
;③
CD
=
BD
CD
=
BD
;④
OE∥AC
OE∥AC

(2)若BC=8,ED=2,求AC;
(3)在(2)的条件下,连接BD、CD,求四边形ABDC的面积.
分析:(1)根据AB是⊙O的直径可知∠ACB=90°,再由OD⊥BC于E,交
BC
于D可知CE=BE,
CD
=
BD
,因为∠ACB=90°,OD⊥BC可知OE∥AC;
(2)连接OC,设OC=r,则OE=r-ED=r-2,再根据垂径定理求出CE的长,在Rt△OCE中利用勾股定理求出r的值,进而可得出OE的长,由(1)可知,OE∥AC,因为点O是线段AB的中点,所以OE是△ABC的中位线,故AC=2OE,由此即可得出结论.
(3)直接根据S四边形ABDC=S△ABC+S△BCD解答即可.
解答:解:(1)∵AB是⊙O的直径,
∴∠ACB=90°,即AC⊥BC,
∵OD⊥BC于E,交
BC
于D,
∴CE=BE,
CD
=
BD

∵AC⊥BC,OD⊥BC,
∴OE∥AC.
故答案为:AC⊥BC;CE=BE;
CD
=
BD
;OE∥AC;

(2)如图1,连接OC,设OC=r,则OE=r-ED=r-2,
∵OD⊥BC,BC=8,
∴CE=
1
2
BC=
1
2
×8=4,
在Rt△OCE中,OC2=OE2+CE2,即r2=(r-2)2+42,解得r=5,
∴OE=5-2=3,
∵由(1)知,OE∥AC,点O是线段AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE=2×3=6;

(3)如图2,∵AC=6,BC=8,ED=2,
∴S四边形ABDC=S△ABC+S△BCD=
1
2
AC•BC+
1
2
BC•ED=
1
2
×6×8+
1
2
×8×2=32.
点评:本题考查的是垂径定理及勾股定理,三角形的面积等相关知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案