精英家教网 > 初中数学 > 题目详情

【题目】如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41, ≈1.73)

【答案】货船的航行速度约为9.9海里/时.

【解析】

由已知可得PQAB,QAP=60°,A=30°,AP=56海里,要求货船的航行速度,即是求PB的长,可先在直角三角形APQ中利用三角函数求出PQ,然后利用三角函数求出PB即可.

设货船速度为x海里/时,

4小时后货船在点B处,作PQAB于点Q.

由题意AP=56海里,PB=4x海里,

在直角三角形APQ中,∠APQ=60°,

所以PQ=28,

在直角三角形PQB中,∠BPQ=45°,

所以,PQ=PB×cos45°=2x.

所以,2x=28,

解得:x=7≈9.9.

答:货船的航行速度约为9.9海里/时.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.

(1)求证:△BDG∽△DEG;

(2)若EGBG=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,垂直平分,分别交于点垂直平分,分别交于点

1)若的周长为29,求的长度;

2)若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

(1)求直线BC与抛物线的解析式;

(2)若点M是抛物线在x轴下方图象上的动点,过点M作MNy轴交直线BC于点N,求MN的最大值;

(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1ABN的面积为S2,且S1=6S2,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A,点B,点Cy轴上的一个动点,当∠BCA=30°时,点C的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,两直角边AC8cmBC6cm

1)作∠BAC的平分线ADBC于点D;(尺规作图,不写作法,保留作图痕迹)

2)计算△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点O为对角线AC的中点,过O点的射线OMON分别交ABBC于点EF,且∠EOF=90°BOEF交于点P,则下面结论:

①图形中全等的三角形只有三对;②△EOF是等腰直角三角形;③正方形ABCD的面积等于四边形OEBF面积的4倍;④BEBF=OA

其中正确结论的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.

(1)求证:BCP≌△DCP;

(2)求证:DPE=ABC;

(3)把正方形ABCD改为菱形,其它条件不变(如图),若ABC=58°,则DPE=   度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

同步练习册答案