精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
k
2x
的图象过点(-2,-
1
2
)

(1)求此反比例函数的解析式;
(2)如图,点A(m,1)是反比例函数图象上的点,求m的值;
(3)利用(2)的结果,请问:在x轴上是否存在点P,使以A、O、P三点为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(1)∵反比例函数y=
k
2x
的图象过点(-2,-
1
2
)

∴-
1
2
=
k
-4

∴k=2,
∴y=
2
2x
=
1
x

∴反比例函数的解析式为:y=
1
x


(2)点A(m,1)是反比例函数图象上的点,
∴m=1;

(3)假设存在P(a,0),使以A、O、P三点为顶点的三角形是直角三角形,
则当∠PAO为直角时,AP=AO,∴P点坐标为(2,0);
当∠APO为直角时,则P点坐标为(1,0).
故存在P(2,0)或者P(1,0),使以A、O、P三点为顶点的三角形是直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,正比例函数y=kx与反比例函数y=
m
x
的图象交于点A(-3,2).
(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)P(m,n)是反比例函数图象上的一动点,其中-3<m<0,过点P作直线PBx轴,交y轴于点B,过点A作直线ADy轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AC与双曲线y=
k
x
在第四象限交于点A(x0,y0),交x轴于点C,且AO=
13
点A的横坐标为2,过点A作AB⊥x轴于点B,且S△ABC:S△ABO=4:1.
(1)求k的值及直线AC的解析式;
(2)在第四象限内,双曲线y=
k
x
上有一动点D(m,n),设△BCD的面积为S,求S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
k
x
在第一象限内的图象上有点A、B,已知点A(3m,m)、点B(n,n+1)(其中m>0,n>0),OA=2
10

(1)求A、B点的坐标及反比例函数解析式;
(2)如果M为x轴上一点,N为y轴上一点,以A、B、M、N为顶点的四边形是平行四边形,请直接写出符合条件的M、N点的坐标,并画出相应的平行四边形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P在反比例函数y=
1
x
(x>0)的图象上,且横坐标为2.若将点P先向右平移两个单位,再向上平移一个单位后所得图象为点P′.则经过点P'的反比例函数图象的解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知矩形AOBC,AO=2,BO=3,函数y=
k
x
的图象经过点C.
(1)直接写出点C的坐标;
(2)将矩形AOBC分别沿直线AC,BC翻折,所得到的矩形分别与函数y=
k
x
(x>0)交于点E,F求线段EF.
(3)若点P、Q分别在函数y=
k
x
图象的两个分支上,请直接写出线段P、Q两点的最短距离(不需证明);并利用图象,求当
k
x
≤x
时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x与反比例函数y=
k
x
(x>0)的图象交于点A,AB⊥y轴,垂足为B,点C在射线BA上(端点除外),点E在x轴上,且∠OCE=90°,CH⊥x轴,垂足为H,并与反比例函数y=
k
x
图象交于点G.
(1)若点B的坐标为(0,4),求k的值;
(2)在(1)的条件下,求证:HG=HE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,正方形ABCD的边BC在x轴上,点E是对角线AC,BD的交点,函数y=
3
x
的图象经过A,E两点,则△OAE的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,双曲线y=
k
x
过点A(-1,3).
(1)求k的值;
(2)若过点A的直线y=-2x+b与x轴交于点B,求△AOB的面积.

查看答案和解析>>

同步练习册答案