精英家教网 > 初中数学 > 题目详情

【题目】下列命题的逆命题为真命题的是( )
A.如果a=b,那么
B.平行四边形是中心对称图形
C.两组对角分别相等的四边形是平行四边形
D.内错角相等

【答案】C
【解析】首先写出各个命题的逆命题,再进一步判断真假即可。
A、逆命题是如果a2=b2 , 那么a=b,是假命题,故本选项错误;
B、逆命题是中心对称图形是平行四边形,是假命题,故本选项错误;
C、逆命题是平行四边形的两组对角分别相等,是真命题,本选项正确;
D、逆命题是相等的角是内错角,是假命题,故本选项错误;
故选C.
【考点精析】本题主要考查了平行四边形的判定和命题与定理的相关知识点,需要掌握两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;我们把题设、结论正好相反的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题;经过证明被确认正确的命题叫做定理才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(
A.“蒙上眼睛射击正中靶心”是必然事件
B.“抛一枚硬币,正面朝上的概率为 ”说明掷一枚质地均匀的硬币10次,必有5次正面朝上
C.“抛一枚均匀的正方体骰子,朝上的点数是3的概率为 ”表示随着抛掷次数的增加,“抛出朝上的点数是3”这一事件发生的频率稳定在 附近
D.为了解某种节能灯的使用寿命,应选择全面调查

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车为1440辆;当每辆次小车的停车费超过5元时,每增加1元,到此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费一每天的固定支出)

A型利润

B型利润

甲店

200

170

乙店

160

150


(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;
(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);
(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形中,以各顶点为圆心,对角线的长的一半为半径在正方形内画弧,则图中阴影部分的面积为( )

A.2-π
B.π
C.-1
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.

(1)求证:∠1=∠BAD;
(2)求证:BE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:如图(1),在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求S正方形MNPQ . 问题探究:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图(2)).
(1)若将上述四个等腰三角形拼成一个新的正方形(无缝隙,不重叠),则新正方形的边长为;这个新正方形与原正方形ABCD的面积有何关系;(填“>”,“=”“或<”);通过上述的分析,可以发现S正方形MNPQ与SFSB之间的关系是
(2)问题解决:求S正方形MNPQ
(3)拓展应用:如图(3),在等边△ABC各边上分别截取AD=BE=CF=1,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△PQR,求SPQR . (请仿照上述探究的方法,在图3的基础上,先画出图形,再解决问题).

查看答案和解析>>

同步练习册答案