精英家教网 > 初中数学 > 题目详情
35、已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.
分析:根据题意证得∠AEF=∠CFM,再由∠AEP=∠CFQ,可得出∠PEM=∠QFM,PE∥QF,即能得出∠EPM=∠FQM.
解答:证明:∵AB∥CD(已知),
∴∠AEF=∠CFM(两直线平行,同位角相等).
又∵∠PEA=∠QFC(已知),
∴∠AEF+∠PEA=∠CFM+∠QFC(等式性质).
即∠PEM=∠QFM.
∴PE∥QF(同位角相等,两直线平行).
∴∠EPM=∠FQM(两直线平行,同位角相等).
点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图所示,直线AD∥BC,AD平分∠CAE,求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、已知:如图所示,直线AB、CD相交于O,OD平分∠BOE,∠AOC=42°,则∠AOE的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,直线l的解析式为y=
34
x-3
,并且与x轴、y轴分别交于点A、B.
(1)求A、B两点的坐标;
(2)半径为0.75的⊙O1,以0.4个单位/秒的速度从原点向x轴正方向运动,问在什么时刻与直线l相切;
(3)在第(2)题的条件下,在⊙O1运动的同时,与之大小相同的⊙O2从点B出发,沿BA方向运动,两圆经过的区域重叠部分是什么形状的图形?并求出其面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,直线AB∥CD,CO⊥OD于O点,并且∠1=40度.则∠D的度数是(  )

查看答案和解析>>

同步练习册答案