精英家教网 > 初中数学 > 题目详情
4.下列运算正确的是(  )
A.6ab-b=6aB.$\frac{1}{a}$+$\frac{1}{b}$=$\frac{2}{a+b}$C.a8÷a2=a4D.(a2b)3=a6b3

分析 直接利用合并同类项法则,分式的加减运算法则,同底数幂的除法以及积的乘方与幂的乘方的性质求解即可求得答案.

解答 解:A、6ab-b≠6a,不能合并;故本选项错误;
B、$\frac{1}{a}$+$\frac{1}{b}$=$\frac{a+b}{ab}$,故本选项错误;
C、a8÷a2=a6,故本选项错误;
D、(a2b)3=a6b3,故本选项正确.
故选D.

点评 此题考查了合并同类项法则,分式的加减运算法则,同底数幂的除法以及积的乘方与幂的乘方.注意掌握指数的变化是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,△A1OB1是边长为1的等边三角形,将其以原点O为中心在原点两侧进行位似变换,得△A2OB2,二者的位似比为1:2,将△A2OB2以x轴为对称轴进行轴对称变换,得△A3OB2再原点O为中心在原点两侧进行位似变换,得△A4OB3,二者的位似比为1:2,按此规律.则点A2016的坐标为($\frac{1}{2}$×4504,$\frac{\sqrt{3}}{2}$×4504).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.若tan40°=a,则tan50°=(  )
A.$\frac{1}{a}$B.-aC.aD.2a

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知一次函数y=kx+b的图象如图所示,下列说法中不正确的是(  )
A.函数值y随x的增大而减少B.kb<0
C.当x<1时,y>0D.k+b<0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一辆动车从重庆开往成都,一辆高铁从成都开往重庆,两车同时出发,设动车离重庆的距离为y1(cm),高铁离重庆的距离为y2(km),动车行驶时间为t(h),变量y1,y2与t之间的关系图象如图所示:
(1)根据图象,求高铁和动车的速度;
(2)动车出发多少小时与高铁相遇;
(3)设两车间的距离为s(km),求两车相遇至高铁到站时,变量s关于t的关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知直线y=2x+3与抛物线y=2x2-3x+1交于A(x1,y1),B(x2,y2)两点,则$\frac{1}{{x}_{1}+1}+\frac{1}{{x}_{2}+1}$=$\frac{9}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.【情景观察】
将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P、Q,如图1,观察图1可知:与NQ相等的线段是PR,与∠NRQ相等的角是∠PMR.
【问题探究】
直角△ABC中,∠B=90°,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.
【拓展延伸】
直角△ABC中,∠B=90°,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3,如果AC=kCE,CD=kCH,试探究TE与TH之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2-2x-3,当x=4时,f(4)=42-2×4-3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2-2x-3的图象如图1所示.
观察可知:f(-2)>0,f(1)<0,则f(-2).f(1)<0.所以函数f(x)=x2-2x-3在-2≤x≤1范围内有零点.由于f(-1)=0,所以,-1是f(x)=x2-2x-3的零点,-1也是方程x2-2x-3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)•f(b)<0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是1.
(2)已知函数y2=f(x)=-$\sqrt{3}{x^2}-2\sqrt{3}(a-1)x-\sqrt{3}({a^2}-2a)$的零点为x1,x2,且x1<1<x2
①求零点为x1,x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1,x2,点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,面积为9cm2的正方形EFGH在面积为25cm2的正方形ABCD所在平面上移动,始终保持EF∥AB,记线段CF的中点为M,DH的中点为N,则线段MN的长度是(  )
A.$\frac{25}{4}$cmB.$\frac{73}{4}$cmC.$\frac{\sqrt{73}}{2}$cmD.$\frac{\sqrt{75}}{2}$cm

查看答案和解析>>

同步练习册答案