精英家教网 > 初中数学 > 题目详情
两地相距45千米,图中折线表示某骑车人离地的距离与时间的函数关系.有一辆客车9点从地出发,以45千米/时的速度匀速行驶,并往返于两地之间.(乘客上、下车停留时间忽略不计)

(1)从折线图可以看出,骑车人一共休息      次,共休息       小时;
(2)请在图中画出9点至15点之间客车与地距离随时间变化的函数图象;
(3)通过计算说明,何时骑车人与客车第二次相遇.
(1)两.两.(2)(3)10点40分
解:(1)两.两.························ (2分)
(2)

···································· (6分)
(3)设直线所表示的函数解析式为
分别代入,得
····························· (9分)
解得
直线所表示的函数解析式为·············· (11分)
代入

.····························· (13分)
答:10点40分骑车人与客车第二次相遇.   (14分)
(1)看图可知,折线图中有两段水平的线,故休息了两次,时间是两次之和(看横轴);
(2)由于客车9点从B地出发,以45千米/时的速度匀速行驶,由此可以确定它到A、B两站的时刻,根据时刻和速度即可画出图象;
(3)通过,求出直线所表示的函数解析式,把代入求解
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知直线PA是一次函数的图象,直线PB是一次函数的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点。

(1)用分别表示点A、B、P的坐标及∠PAB的度数;
(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;
(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABO中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①, 当E点恰好落在线段AB上,求点E的坐标;
    
(Ⅱ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移(如图②),图中是否存在一条与线段始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由.
(Ⅲ)若点D从原点出发沿x轴的正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分面积为y,请直接写出y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线、线段分别表示甲、乙两车所行路程(千米)与时间(小时)之间的函数关系对应的图象(线段表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:

(1)求乙车所行路程与时间的函数关系式;(4分)
(2)求两车在途中第二次相遇时,它们距出发地的路程;(4分)
(3)乙车出发多长时间,甲、乙两车相距80千米?(写出解题过程) (4分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,□ABCO的顶点A在轴上,顶点B的坐标为(4,6).若直线将□ABCO分割成面积相等的两部分,则k的值是(   )
A.B.C.-D.-

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某下岗职工购进一批货物,到集贸市场零售,已知卖出去的货物数量x与售价y的关系如下表:
数量x(千克)
1
2
3
4
5
售价y(元)
3+0.1
6+0.2
9+0.3
12+0.4
15+0.5
写出用x表示y的公式是________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若函数y=(2+m)x是正比例函数,则常数m的值是     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

y(m)

 
如图16-1,在一次航海模型船训练中,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲船在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙船在赛道A2B2上以2m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两船同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲船运动时,y(m)与t(s)的函数图象如图16-2所示.


小题1:赛道的长度是_________m,甲船的速度是________m/s;
小题2:分别求出甲船在0≤t≤30和30<t≤60时,y关于t的函数关系式;
小题3:求出乙船由B2到达A2的时间,并在图16-2中画出乙船在3 分钟内的函数图象
小题4:请你根据(3)中所画的图象直接判断,若从甲、乙两船同时开始出发到3分钟为止,甲、乙共相遇了几次?

查看答案和解析>>

同步练习册答案