精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线 与x轴相交于点A、B,与y轴相交于点C,抛物线对称轴与x轴相交于点M,

(1)求△ABC的面积;
(2)若p是x轴上方的抛物线上的一个动点,求点P到直线BC的距离的最大值;
(3)若点P在抛物线上运动(点P异于点A),当∠PCB=∠BCA时,求直线PC的解析式.

【答案】
(1)

解:令y=0,则有﹣ x2+4x﹣6=﹣ (x﹣2)(x﹣6)=0,

解得:x1=2,x2=6,

即点A(2,0),点B(6,0).

令x=0,则y=﹣6,

即点C(0,6).

∴AB=4,CO=6.

△ABC的面积SABC= ABCO= ×4×6=12


(2)

解:设直线BC的解析式为y=kx+b,

∵点B(6,0),点C(0,﹣6),

∴有 ,解得

∴直线BC的解析式为y=x﹣6.

设经过动点P且平行于直线BC的直线解析式为y1=x+a.

将y1=x+a代入抛物线y=﹣ x2+4x﹣6中得: x2﹣3x+6+a=0,

若直线y1=x+a与抛物线相切,则有:

△=(﹣3)2﹣4× ×(6+a)=0,即3+2a=0,

解得:a=﹣

﹣3x+6﹣ =0,即x2﹣6x+9=0,

解得:x=3,

将x=3代入y1=x﹣ ,得y1=

∴此时P点坐标为(3, )在x轴上方.

∵直线BC的解析式为x﹣y﹣6=0,

∴点P到直线BC的距离= =

故点P到直线BC的距离的最大值为


(3)

解:过点A作AE⊥BC与点E,并延长AE交直线CP与点D,如图所示.

∵点A(2,0),点B(6,0),点O(0,0),点C(0,﹣6),

∴AB=4,OA=2,OC=6,OB=6.

由勾股定理可知:AC= =2 ,BC= =6

∴sin∠OBC= = = ,AE=2

∵∠PCB=∠ACB,且BC⊥AD,

∴CD=CA=2 ,DE=AE=2 (等腰三角形三线合一),

∴AD=AE+DE=4

设点D坐标为(m,n),

则由两点间的距离公式可知,

,解得 (舍去)或

即此时点D的坐标为(6,﹣4).

设直线CP的解析式为y=k1x﹣6,将D点坐标代入得:

﹣4=6k1﹣6,解得:k1=

∴若点P在抛物线上运动(点P异于点A),当∠PCB=∠BCA时,直线PC的解析式为y= x﹣6.


【解析】(1)令x=0,可得点C坐标,令y=0,可得点A、B坐标,再结合三角形面积公式,即可得出结论;(2)找与直线BC平行且过动点P的直线,令此直线与抛物线相切,看切点P是否在x轴上方,如果在,则切点P到直线BC的距离就是所求最大距离,若不在,只需考虑端点A、B到直线BC的距离即可;(3)过点A作AE⊥BC与点E,并延长AE交直线CP与点D,巧妙利用等腰三角形的三线合一,找出AD、CD的长度,根据两点间的距离公式即可得出结论,不过此处要注意到会产生增根.
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是抛物线上两点,则y1<y2 , 其中说法正确的是(

A.①②
B.②③
C.①②④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC.

(1)求点C的坐标;
(2)求这个二次函数的解析式,并求出该函数的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠B=D,BC=DC,要判定ABC≌△EDC,当添加条件_________时,可根据“ASA”判定;当添加条件_____时,可根据“AAS”判定;当添加条件________时,可根据“SAS”判定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,延长CB至M,使BM=2,连接AM,BN⊥AM于N,O是AC、BD的交点,连接ON,则ON的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的文字,解答问题.

大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗?

事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.

请解答:已知:10+=x+y,其中x是整数,0<y<1,x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是 上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.

查看答案和解析>>

同步练习册答案