精英家教网 > 初中数学 > 题目详情

【题目】如图:APBC是⊙O上的四个点,且∠APC=∠CPB60°

1)判定ABC的形状,证明你的结论;

2)若⊙O的半径为2,求AB的长.

【答案】1ABC是等边三角形,理由见解析;(22

【解析】

1)根据同弦对应的圆周角相等,可知∠CAB=∠CPB60°,再根据三角形内角和为180°,继而得出ABC为等边三角形.

2)延长BO交⊙OE,连接CE,可知∠E=∠BAC60°,根据△BEC为直角三角形,可得BEBC的长.

解:(1ABC是等边三角形,

理由如下:由圆周角定理得,∠ABC=∠APC60°,∠CAB=∠CPB60°

∴△ABC是等边三角形;

2)延长BO交⊙OE,连接CE

由圆周角定理得,∠E=∠BAC60°

ABBC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料,回答问题.

材料:求圆外一定点到圆上距离最小值是安徽省中考数学较为常见的一种题型,此类题型试题有时出题者将圆隐藏,故又称为隐圆问题.解决这类问题,关键是要找到动点的运动轨迹,即该动点是绕哪一个定点旋转,且能保持旋转半径不变.从而找到动点所在的隐藏圆,进面转换成圆外一点到圆心的距离减半径,求得最小值.

解决问题:

1)如图①,圆O的半径为1,圆外一点A到圆心的距离为3,圆上一动点B,当AOB满足条件____________时,有最小值为____________.

2)如图②,等腰两腰长为5,底边长为6,以A为圆心,2为半径作圆,圆上动点P的距离最小值为__________.

3)如图③,PQ分别是射线上两个动点,C是线段的中点,且,则在线段滑动的过程中,求点C运动形成的路径长,并说明理由.

4)如图④,在矩形中,,点E中点,点F上一点,把沿着翻折,点B落在点处,求的最小值,并说明理由.

5)如图⑤,在中,,以边中点O为圆心,作半圆与相切,点PQ分别是边和半圆上的动点,连接,求长的最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,正方形ABCD中,P是边BC上一点,BEAP,DFAP,垂足分别是点E、F.

(1)求证:EF=AE﹣BE;

(2)联结BF,如课=.求证:EF=EP.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=72°,将△ABC绕点B按逆时针方向旋转得到△BDE(点D与点 A是对应点,点E与点C是对应点),且边DE恰好经过点C,则∠ABD的度数为

A. 36° B. 40° C. 45° D. 50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.

1)建立如图所示的直角坐标系,求此抛物线的解析式;

2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,GCD边中点,连接AG并延长交BC边的延长线于E点,对角线BDAGF点.已知FG2,则线段AE的长度为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于A(﹣21),B1n)两点.

根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数的图象与轴有两个交点,坐标分别是(x10),(x20),且. 图象上有一点轴下方,则下列判断正确的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边ABC中,以BC为弦的⊙O分别与ABAC交于点DE,点FBC延长线上一点,CFAE,连接EF

1)如图1BC为直径,求证:EF是⊙O的切线;

2)如图2EF与⊙O交于点G,⊙O的半径为1BC的长为π,求BF的长.

查看答案和解析>>

同步练习册答案