精英家教网 > 初中数学 > 题目详情
如图AB是⊙O的直径,弦CD⊥AB于P,CD=4
3
,OP=2,则AC的长是(  )
分析:连接OC,由直径AB垂直于弦CD,利用垂径定理得到P为CD的中点,由CD的长求出CP的长,在直角三角形OCP中,由OP与PC的长,利用勾股定理求出OC的长,即为OA的长,由AO+OP求出AP的长,在直角三角形ACP中,由AP与PC的长,利用勾股定理即可求出AC的长.
解答:解:连接OC,如图所示:
∵直径AB⊥CD,CD=4
3

∴P为CD的中点,即CP=DP=2
3

在Rt△OCP中,OP=2,CP=2
3

根据勾股定理得:OC=
OP2+CP2
=4,
则OA=OC=4,
则AP=AO+OP=4+2=6,
在Rt△APC中,AP=6,CP=2
3

根据勾股定理得:AC=
AP2+CP2
=4
3

故选C.
点评:此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图AB是⊙O的直径,弦DC⊥AB于点E,在
AD
上取一点F,连接精英家教网CF交AB于点M,连接DF并延长交BA的延长线于点N.
求证:
(1)∠DFC=∠DOB;
(2)MN•OM=MC•FM.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图AB是⊙O的直径,∠D=35°,则∠AOC=
70°
70°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•自贡)如图AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)若AB=2,∠P=30°,求AP的长;
(2)若D为AP的中点,求证:直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南昌)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出△ABC的三条高的交点;
(2)在图2中,画出△ABC中AB边上的高.

查看答案和解析>>

同步练习册答案