9£®Ð¡Ã÷¡¢Ð¡»ªÔ¼ºÃÈ¥»¬Ñ©³¡»¬Ñ©£®Ð¡Ã÷³Ë»·±£³µ´ÓÃñË×´å³ö·¢£¬Ñؾ°Çø¹«Â·£¨Èçͼ1Ëùʾ£©È¥»¬Ñ©³¡£¬Í¬Ê±Ð¡»ª´Ó¹ÅÃíȺ³ö·¢£¬Æïµç¶¯×ÔÐгµÑؾ°Çø¹«Â·È¥»¬Ñ©³¡£®Ð¡Ã÷¡¢Ð¡»ªÓëÃñË×´åÖ®¼äµÄ·³Ìs£¨µ¥Î»£ºkm£©Óëʱ¼ät£¨µ¥Î»£ºh£©µÄº¯ÊýͼÏóÈçͼ2Ëùʾ£®
£¨1£©ÃñË×´åÓë¹ÅÃíȺ֮¼äµÄ·³ÌΪ10km£»
£¨2£©·Ö±ðÇóСÃ÷¡¢Ð¡»ªÓëÃñË×´åÖ®¼äµÄ·³Ìs¹ØÓÚʱ¼ätµÄº¯Êý½âÎöʽ£¨²»ÒªÇóд×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£©£»
£¨3£©Ö±½Óд³öµ±Ð¡Ã÷µ½´ï»¬Ñ©³¡Ê±£¬Ð¡»ªÓ뻬ѩ³¡µÄ·³Ì£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâºÍº¯ÊýͼÏó¿ÉÒÔÇóµÃÃñË×´åÓë¹ÅÃíȺ֮¼äµÄ·³Ì£»
£¨2£©¸ù¾Ýº¯ÊýͼÏóÖеÄÊý¾Ý¿ÉÒÔÇóµÃСÃ÷¡¢Ð¡»ªÓëÃñË×´åÖ®¼äµÄ·³Ìs¹ØÓÚʱ¼ätµÄº¯Êý½âÎöʽ£»
£¨3£©¸ù¾ÝÌâÒâ¿ÉÒÔÇóµÃСÃ÷µ½´ï»¬Ñ©³¡µÄʱ¼ä£¬´Ó¶ø¿ÉÒÔÇóµÃµ±Ð¡Ã÷µ½´ï»¬Ñ©³¡Ê±£¬Ð¡»ªÓ뻬ѩ³¡µÄ·³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬
ÃñË×´åÓë¹ÅÃíȺ֮¼äµÄ·³ÌΪ£º10-0=10£¨km£©£¬
¹Ê´ð°¸Îª£º10£»
£¨2£©ÉèСÃ÷ÓëÃñË×´åÖ®¼äµÄ·³Ìs¹ØÓÚʱ¼ätµÄº¯Êý½âÎöʽÊÇs=kt£¬
k¡Á1=30£¬µÃk=30£¬
¼´Ð¡Ã÷ÓëÃñË×´åÖ®¼äµÄ·³Ìs¹ØÓÚʱ¼ätµÄº¯Êý½âÎöʽÊÇs=30t£¬
ÉèС»ªÓëÃñË×´åÖ®¼äµÄ·³Ìs¹ØÓÚʱ¼ätµÄº¯Êý½âÎöʽÊÇs=at+b£¬
$\left\{\begin{array}{l}{b=10}\\{a+b=30}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{a=20}\\{b=10}\end{array}\right.$£¬
¼´Ð¡»ªÓëÃñË×´åÖ®¼äµÄ·³Ìs¹ØÓÚʱ¼ätµÄº¯Êý½âÎöʽÊÇs=20t+10£»
£¨3£©ÓÉÌâÒâ¿ÉµÃ£¬
½«s=45´úÈës=30t£¬µÃt=1.5£¬
¼þt=1.5´úÈës=20t+10£¬µÃs=40£¬
45-40=5£¬
´ð£ºµ±Ð¡Ã÷µ½´ï»¬Ñ©³¡Ê±£¬Ð¡»ªÓ뻬ѩ³¡µÄ·³ÌÊÇ5km£®

µãÆÀ ±¾Ì⿼һ´Îº¯ÊýµÄÓ¦Ó㬽â´ð±¾ÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£¬ÀûÓÃÒ»´Îº¯ÊýµÄÐÔÖʺÍÊýÐνáºÏµÄ½â´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÎÒ¹ú¹Å´úÊýѧ¼ÒÕÔˬµÄ¡°¹´¹ÉÔ²·½Í¼¡±ÊÇÓÉËĸöÈ«µÈµÄÖ±½ÇÈý½ÇÐÎÓëÖмäµÄÒ»¸öСÕý·½ÐÎÆ´³ÉÒ»¸ö´óÕý·½ÐΣ¨ÈçͼËùʾ£©£¬Èç¹û´óÕý·½ÐεÄÃæ»ýÊÇ49£¬Ð¡Õý·½ÐεÄÃæ»ýΪ4£¬Ö±½ÇÈý½ÇÐεÄÁ½Ö±½Ç±ß³¤·Ö±ðΪa£¬b£¬ÄÇôÏÂÁнáÂÛ£º
£¨1£©a2+b2=49£¬£¨2£©b-a=2£¬£¨3£©ab=$\frac{45}{2}$£¬£¨4£©a+b=$\sqrt{94}$ÖУ¬
ÕýÈ·½áÂ۵ĸöÊýÓУ¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ËıßÐÎABCDÖУ¬AB=3£¬AD=4£¬BC=12£¬CD=13£¬ÇÒ¡ÏDAB=90¡ã£¬ÇóÕâ¸öËıßÐεÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬ÊÇÒ»×éÓйæÂɵÄͼ°¸£¬ËüÃÇÊÇÓɱ߳¤ÏàͬµÄÕý·½ÐκÍÕýÈý½ÇÐÎÏâǶ¶ø³É£¬µÚ£¨1£©¸öͼ°¸ÓÐ4¸öÈý½ÇÐΣ¬µÚ£¨2£©¸öͼ°¸ÓÐ7¸öÈý½ÇÐΣ¬µÚ£¨3£©¸öͼ°¸ÓÐ10¸öÈý½ÇÐΣ¬¡­ÒÀ´Ë¹æÂÉ£¬µÚ100¸öͼ°¸ÖÐÓÐÈý½ÇÐεĸöÊýΪ£¨¡¡¡¡£©
A£®301B£®302C£®303D£®304

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Ö±ÏßABÓë·´±ÈÀýº¯ÊýµÄͼÏó½»ÓÚA£¨-4£¬2£©¡¢B£¨2£¬n£©Á½µã£®
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽºÍÖ±ÏßABµÄ½âÎöʽ£»
£¨2£©Çó¡÷OABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÊµÊýn¡¢mÊÇÁ¬ÐøÕûÊý£¬Èç¹ûn£¼$\sqrt{17}$£¼m£¬ÄÇôm+nµÄֵΪ£¨¡¡¡¡£©
A£®9B£®10C£®11D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬AB=$\sqrt{13}$£¬AD=4£¬½«ÆäÑØAE·­Õۺ󣬵ãBÇ¡ºÃÓëµãCÖغϣ¬ÔòÕÛºÛAEµÄ³¤Îª3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¼ÆË㣺$\root{3}{-8}$+|$\sqrt{3}$-2|+$\sqrt{£¨-3£©^{2}}$-£¨-$\sqrt{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{2-x£¾0}\\{\frac{3x+1}{2}£¾\frac{2x-1}{3}}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸