精英家教网 > 初中数学 > 题目详情

已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.

①求证:CD=AN;
②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.

①先根据平行线的性质可得∠DAC=∠NCA,再有MA=MC,∠AMD=∠CMN可证得△AMD≌△CMN,即可得到AD=CN,再结合AD∥CN可得四边形ADCN是平行四边形,从而得到结论;
②∵由∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,可得∠MCD=∠MDC,即可得到MD=MC,由①知四边形ADCN是平行四边形,即可得到MD=MN=MA=MC,从而得到结论.

解析试题分析:①∵CN∥AB,
∴∠DAC=∠NCA,
在△AMD和△CMN中,

∴△AMD≌△CMN(ASA),
∴AD=CN,
又∵AD∥CN,
∴四边形ADCN是平行四边形,
∴CD=AN;
②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC,
∴MD=MC,
由①知四边形ADCN是平行四边形,
∴MD=MN=MA=MC,
∴AC=DN,
∴四边形ADCN是矩形.
考点:全等三角形的判定和性质,平行四边形、矩形的判定
点评:全等三角形的判定和性质及特殊四边形的判定是初中数学中极为重要的知识,贯穿于整个初中数学,再中考中极为常见,需熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC的延长线上.试证明∠1<∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2001•东城区)已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O′的直径,BD切半圆O′于点D,CE⊥AB交半圆O于点F.
(1)求证:BD=BE;
(2)若两圆半径的比为3:2,试判断∠EBD是直角、锐角还是钝角?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•西藏)已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.
(1)求证:△PBC≌AOC;
(2)如果PB=2,点M在⊙O的下半圈上运动(不与A、B重合),求当△ABM的面积最大时,AC•AM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

查看答案和解析>>

同步练习册答案