精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,DE垂直平分AC交AB于E,连结CE.
(1)求证:∠BCE=∠ACB-∠A;
(2)如果∠ACB=90°,∠A=30°,求证:AE=BE.

证明:(1)∵DE垂直平分AC,
∴AE=CE,
∴∠ACE=∠A,
∴E=∠ACB-∠ACE=∠ACB-∠A,
即:∠BCE=∠ACB-∠A;

(2)∵∠ACB=90°,∠A=30°,
∴∠BCE=90°-30°=60°,
∠B=90°-30°=60°,
∴∠BCE=∠B=60°,
∴△BCE是等边三角形,
∴CE=BE,
∵AE=CE,
∴AE=BE.
分析:(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,再利用等边对等角求出∠ACE=∠A,整理即可得证;
(2)根据(1)的结论求出∠BCE,再根据直角三角形两锐角互余求出∠B,然后求出△BCE是等边三角形,再根据等边三角形的性质求出CE=BE,即可得证.
点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等,等边对等角的性质,等边三角形的判断出与性质,准确识图并熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案