【题目】阅读下列材料:我们知道|a|的几何意义是在数轴上数a对应的点与原点的距离,即|a|=|a﹣0|,也就是说,|a|表示在数轴上数a与数0对应点之间的距离.这个结论可以推广为:|a﹣b|表示在数轴上数a与b对应点之间的距离.
例1 已知|a|=2,求a的值.
解:在数轴上与原点距离为2的点的对应数为﹣2和2,即a的值为2和﹣2.
例2 已知|a﹣1|=2,求a的值.
解:在数轴上与1的距离为2点的对应数为3和﹣1,即a的值为3和﹣1.
仿照阅读材料的解法,解决下列问题:
(1)已知|a|=,求a的值;
(2)已知|a+2|=4,求a的值;
(3)若数轴上表示a的点在﹣4与2之间,则|a+4|+|a﹣2|的值为 ;
(4)当a满足 时,则|a+4|+|a﹣2|的值最小,最小值是 .
【答案】(1)﹣3或3;(2)﹣6或2;(3)6;(4)﹣4≤a≤2;6.
【解析】
(1)由阅读材料中的方法求出a的值即可;
(2)由阅读材料中的方法求出a的值即可;
(3)根据a的范围判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果;
(4)根据题意得出原式最小时a的范围,并求出最小值即可.
解:(1)|a|=3,在数轴上与原点距离为3的点的对应数为﹣3和3,即a的值为﹣3或3;
(2)|a+2|=4,在数轴上与﹣2距离为4的点的对应数为﹣6和2,即a的值为﹣6或2;
(3)根据题意得:﹣4<a<2,即a+4>0,a﹣2<0,
则原式=a+4+2﹣a=6;
(4)当a满足﹣4≤a≤2时,最小值为2+4=6.
故答案为:6;﹣4≤a≤2;6.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1)、B(0,﹣2)、C(1,0),点P(0,2)绕点A旋转180°得到点,点绕点B旋转180°得到点,点绕点C旋转180°得到点,点绕点A旋转180°得到点,…,按此作法进行下去,则点的坐标为( )
A.(0,4)B.(﹣2,0)C.(2,﹣4)D.(﹣2,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场计划购进冰箱、彩电进行销售.相关信息如下表:
进价(元/台) | 售价(元/台) | |
冰箱 | 2500 | |
彩电 | 2000 |
(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值.
(2)为了满足市场需要求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的.
①该商场有哪几种进货方式?
②若该商场将购进的冰箱、彩电全部售出,获得的最大利润为w元,请用所学的函数知识求出w的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种油菜籽在相同条件下的发芽实验结果如表:
(1)a= ,b= ;
(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;
(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
(1)求证:BG=DE;
(2)若E为AD中点,FH=2,求菱形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.
(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);
(2)下列说法正确的有 ;(填写所有正确结论的序号)
①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;
③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.
(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.
①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;
②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形纸片ABCD中,AB=6,BC=8.
(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,求BF的长;
(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于A、B两点(点A在点B的左侧),与轴交于点C,顶点为D,对称轴与轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交轴交于点G.
(1)如图①,求直线CE的解析式和顶点D的坐标;
(2)如图①,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于轴的直线l上一点,点N是抛物线对称轴上一点,求的最小值;
(3)如图②,过点D作交轴于点I,将△GDI沿射线GB方向平移至处,将绕点逆时针旋转,当旋转到一定度数时,点会与点I重合,记旋转过程中的为,若在整个旋转过程中,直线G’’I’’分别交x轴和直线GD’于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2014河南21题)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下降元,且限定商店最多购进A型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com