精英家教网 > 初中数学 > 题目详情
如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm,如果⊙P以1cm/秒的速度沿由A向B的方向移动,那么当⊙P的运动时间t(秒)满足什么条件时,⊙P与直线CD相交?
解:如图,当⊙P运动到⊙P'时,⊙P与CD相切

作P'E⊥CD于E
∵⊙P半径为1㎝
∴PE=1
又∠AOC=30°,P'E⊥CD
∴PO=2
∴t=4
当⊙P的圆心运动到点O上时,⊙P与CD相交
∴t=6
综上可知,4<t≤6。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.
(1)图中∠AOF的余角是
 
(把符合条件的角都填出来).
(2)图中除直角相等外,还有相等的角,请写出三对:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根据
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、完成推理填空:如图:直线AB、CD被EF所截,若已知AB∥CD,
求证:∠1=∠2.
请你认真完成下面填空.
证明:∵AB∥CD    (已知),
∴∠1=∠
3
( 两直线平行,
同位角相等
 )
又∵∠2=∠3,(
对顶角相等
 )
∴∠1=∠2 (
等量代换
 ).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度数=
33°
33°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB,CD相交于O点,EO⊥CD,垂足为O点,若∠BOE=50°,求∠AOD的度数.

查看答案和解析>>

同步练习册答案