精英家教网 > 初中数学 > 题目详情

如图在等腰直角三角形ABC中,∠C=,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为

[  ]

A.
B.2
C.1
D.
答案:B
解析:

DDE ABE

tan DBA=

所以EB=5DE

又知 A=45°

所以AD =DE +AE

AD= DE

DC=6 DE

又因为DC +BC =DB

即(6- DE +6 =DE +5DE

解得:DE=

AD= ×DE=2


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小明参加数学兴趣小组活动,提供了下面3个有联系的问题,请你帮助解决:
(1)如图①,等腰直角三角形的直角顶点C在直线l上滑动,分别过A、B作直线l的垂线,垂足为D、E.那么,点C在滑动过程中,线段DE、AD及BE的数量关系为
DE=BE+AD
DE=BE+AD

(2)如图②,△ABC中,AP⊥BC于P,分别以AB、AC为边向外做正方形ABDE和正方形ACGF,再分别过E、F作直线AP的垂线,垂足为M、N.求证:PN=EM+PC;
(3)如图③,若把图②中的正方形ABDE和正方形ACGF改成矩形ABDE和矩形ACGF,且AB=mBD,CG=mAC,其它条件不变.请问(2)中的结论还成立吗?若成立,请证明;若不成立,请写出新的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角三角形△ABC的直角边与正方形MNPQ的边长都为4cm,且在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到点C与点N重合.设阴影部分面积为y(cm2),MA的长为x(cm),则y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,等腰直角三角形ABC的直角边长为16,D在AB上,且DB=4,M是在AC上的一动点,则DM+BM的最小值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.等腰直角三角形ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角形,使45°角的顶点落在点P,且绕P旋转.
(1)如图①:当三角板的两边分别AB、AC交于E、F点时,试说明△BPE∽△CFP.
(2)将三角板绕点P旋转到图②,三角板两边分别交BA延长线和边AC于点EF.
探究1:△BPE与△CFP.还相似吗?(只需写结论)
探究2:连接EF,△BPE与△EFP是否相似?请说明理由.

查看答案和解析>>

同步练习册答案