精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,于点.,则的面积为__________

【答案】

【解析】

根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE30°,进而得到∠EAC=ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出ADDE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.

∵旋转后AC的中点恰好与D点重合,
AD= AC′=AC
∴在RtACD中,∠ACD=30°,即∠DAC=60°
∴∠DAD′=60°
∴∠DAE=30°
∴∠EAC=ACD=30°
AE=CE
RtADE中,设AE=EC=x

AB=CD=6
DE=DC-EC=AB-EC=6-xAD=CD×tanACD=×6=2
根据勾股定理得:x2=6-x2+2 2
解得:x=4
EC=4
SAEC=ECAD=4

故答案为:4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+cx轴交于AB两点,与y轴交于C点,OA2OC6,连接ACBC

1)求抛物线的解析式;

2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;

3)点E是第四象限内抛物线上的动点,连接CEBE.求△BCE面积的最大值及此时点E的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的东北方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处.

1)若灯塔P周围50海里范围内有暗礁,海轮从A处到B处的途中,是否有触礁危险?

2)若海轮以每小时30海里的速度从A处到B处,试判断海轮能否在5小时内到达B处,并说明理由.(参考数据:≈1.41≈1.73≈2.45

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,线段是⊙的直径,过点作直线交⊙两点,过点作的角平分线交⊙,过的垂线交

1)证明是⊙的切线

2)证明

3)若⊙的直径为10,求

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形中,,分别以所在直线为轴和轴建立如图所示的平面直角坐标系,上的一个动点(不与重合),过点的反比例函数的图象与边交于点,连接

1)若,求点的坐标;

2)当点上移动时,的面积差记为,求当为何值时,有最大值,最大值是多少?

3)是否存在这样的点,使得为直角三角形?若存在,求出此时点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象经过P22),顶点为O00),将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为(  )

A.yx2B.yx22C.yx42D.yx22+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出交点与垂足之间的数值.

请回答:

1)如图1ABC是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CDAB

2)如图2,线段ABCD交于点O,小明在点阵中找到了点E,连接AE.恰好满足AECDE,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.

请你帮小明计算:OC   OF   

参考小明思考问题的方法,解决问题:

3)如图3,线段ABCD交于点O.在点阵中找到点E,连接AE,满足AECDF.计算: OC   OF   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC中,OA4AB3,点D在边BC上,且CD3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为(  )

A.B.C.D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】聪明好学的亮亮看到一课外书上有个重要补充:

(角平分线定理)三角形一个内角的平分线分对边所成的两条线段与这个角的两邻边对应成比例.于是他就和其他同学研究一番,写出了已知、求证如下:

已知:如图1,△ABC中,AD平分∠BACBC于点D,求证:

可是他们依然找不到证明的方法,于是,老师提示:过点BBEACAD延长线于点E,于是得到△BDE∽△CDA,从而打开思路.

)请你按老师的提示或你认为其他可行的方法帮亮亮完成证明.

)利用角平分线定理解决如下问题:

如图2,△ABC中,EBC中点,AD是∠BAC的平分线,EFADACFAB7AC15,求AF的长.

查看答案和解析>>

同步练习册答案