精英家教网 > 初中数学 > 题目详情
(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.
这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.

【研究速算】
提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.
(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果

【研究方程】
提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?
几何建模:
(1)变形:x(x+2)=35.
(2)画四个长为x+2,宽为x的矩形,构造图4
(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)
【研究不等关系】
提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?
几何建模:
(1)画长y+3,宽y+2的矩形,按图5方式分割
(2)变形:2y+5=(y+3)+(y+2)
(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
归纳提炼:
当a>2,b>2时,表示ab与a+b的大小关系.
根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)
分析:【研究速算】十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;
【研究方程】画四个长为x+b,宽为x的矩形,构造答图1,则图中的大正方形面积有两种不同的表达方式,由此建立方程求解即可;
【研究不等关系】画长为2+m,宽为2+n的矩形,并按答图2方式分割.图中大矩形面积可表示为(2+m)(2+n),阴影部分面积可表示为2+m与2+n的和.由图形的部分与整体的关系可知,(2+m)(2+n)>(2+m)+(2+n),即ab>a+b.
解答:解:【研究速算】
归纳提炼:
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果.

【研究方程】
归纳提炼:
画四个长为x+b,宽为x的矩形,构造答图1,则图中的大正方形面积可以有两种不同的表达方式:(x+x+b)2或四个长为x+b,宽为x的矩形面积之和,加上中间边长为b的小正方形面积.

即:(x+x+b)2=4x(x+b)+b2
∵x(x+b)=c,
∴(x+x+b)2=4c+b2
∴(2x+b)2=4c+b2
∵x>0,
∴x=
4c+b2
-b
2


【研究不等关系】
归纳提炼:
(1)画长为2+m,宽为2+n的矩形,并按答图2方式分割.

(2)变形:a+b=(2+m)+(2+n)
(3)分析:图中大矩形面积可表示为(2+m)(2+n),阴影部分面积可表示为2+m与2+n的和.由图形的部分与整体的关系可知,(2+m)(2+n)>(2+m)+(2+n),即ab>a+b.
点评:本题考查了数形结合的数学思想,利用数形结合思想建立了代数(速算、方程与不等式等)与几何图形之间的内在联系,体现了数学的魅力,是一道好题.试题立意新颖,构思巧妙,对于学生的学习大有裨益;不足之处在于题干篇幅过长,学生读题并理解题意需要花费不少的时间,影响答题的信心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•青岛)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•青岛)已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.
求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)
结论:BE=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•青岛)请根据所给信息,帮助小颖同学完成她的调查报告
2013年4月光明中学八年级学生每天干家务活平均时间的调查报告
调查目的  了解八年级学生每天干家务活的平均时间
调查内容  光明中学八年级学生干家务活的平均时间
调查方式  抽样调查
调查步骤  1.数据的收集
(1)在光明中学八年级每班随机调查5名学生
(2)统计这些学生2013年4月每天干家务活的平均时间(单位:min)结果如下(其中A表示10min,B表示20min,C表示30min)
 B  A  A  B  B  B  B  A  C  B  A  B  B  C
 A  B  A  A  C  A  B  B  C  B  A  B  B  A  C
2.数据的处理:
以频数分布直方图的形式呈现上述统计结果  请补全频数分布直方图
3.数据的分析:
列式计算所随机调查学生每天干家务活平均时间的平均数(结果保留整数)
调查结论  光明中学八年级共有240名学生,其中大约有
120
120
名学生每天干家务活的平均时间是20min

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB=
2:1
2:1
时,四边形MENF是正方形(只写结论,不需证明)

查看答案和解析>>

同步练习册答案