精英家教网 > 初中数学 > 题目详情

如图,菱形ABCD中,AB=5,AC=8,动点P以每秒1个单位的速度沿边DA从点D运动到点A,动点Q同时以每秒1个单位的速度沿边AB从点A运动到点B.连接BP交AC于点E,连接QE.设动点P、Q的运动时间为t秒.
(1)求BD的长.
(2)当t为何值时,QE∥AD?
(3)①在P、Q的运动过程中,请求出四边形AQEP的面积S关于t的函数解析式,并写出t的取值范围;②当△AQE的外接圆经过点P时,写出此时S的值.(直接写出答案)

解:(1)∵四边形ABCD是菱形,
∴OA=OC=AC=4,BD=2BO,∠AOB=90°,∠1=∠2,
∴OA2+OB2=AB2
∵AB=5,
∴16+OB2=25,解得,
OB=3,
∴BD=6
(2)∵QE∥AD,
∴∠2=∠3,
∴∠1=∠3,
∴AQ=QE.
∵PD=t,AQ=t,
∴AP=5-t,QB=5-t,QE=t,
∵QE∥AD,
∴△BQE∽△BAP,

,解得,
t1=(舍去),t2=
∴t=时,QE∥AD.
(3)①∵四边形ABCD是菱形,
∴∠2=∠ACB,∠PEA=∠CEB,
∴△APE∽△CBE,∴

∴AE=
过点E作EF⊥AB于F,
∴△AEF∽△ABO,


EF=
S四边形AQEP=S△ABE=•EF•AB=×5×=
∴S= (0<t≤5)
②S=

分析:(1)根据菱形的性质,由勾股定理先求出BO,再就可以求出BD的值了.
(2)由菱形的性质及QE∥AD可以得出∠1=∠3,得出QE=AQ,再根据相似三角形的性质就可以求出其结论.
(3)①利用△APE∽△CBE将AE表示出来,过点E作EF⊥AB于F,再根据△AEF∽△ABO表示出EF,最后利用三角形的面积公式就可以表示出结论;②由条件可以知道AEPQ四点共圆,得出∠AQE=∠APE=90°,由勾股定理可以求出其值.
点评:本题考查了菱形的性质,平行线的判定,相似三角形的判定及性质,三角形的面积及三角形的外接圆与外心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案