精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点PQ分别从OC同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒.

(1)用t的式子表示△OPQ的面积S

(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;

(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.

 


解:(1) ∵CQtOP=tCO=8    ∴OQ=8-t

SOPQ(0<t<8)

(2) ∵S四边形OPBQS矩形ABCDSPABSCBQ

=32   

∴四边形OPBQ的面积为一个定值,且等于32       

(3)当△OPQ与△PAB和△QPB相似时, △QPB必须是一个直角三角形,依题意只能是∠QPB=90°

    又∵BQAO不平行    ∴∠QPO不可能等于∠PQB,∠APB不可能等于∠PBQ

∴根据相似三角形的对应关系只能是△OPQ∽△PBQ∽△ABP

解得:t=4    

经检验:t=4是方程的解且符合题意(从边长关系和速度)

此时P,0)

B,8)且抛物线经过B、P两点,

∴抛物线是,直线BP是:

Mm, )、N(m)

MBP上运动   ∴

交于P、B两点且抛物线的顶点是P

∴当时,            

  ∴当时,MN有最大值是2

∴设MNBQ交于H 点则

SBHM

SBHMS五边形QOPMH=3:29

∴当MN取最大值时两部分面积之比是3:29.       

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案