精英家教网 > 初中数学 > 题目详情

【题目】如图,已知反比例函数的图像与一次函数的图象相交于点A14)和点Bm-2).

1)求反比例函数和一次函数的解析式;

2)求ΔAOC的面积;

3)直接写出时的x的取值范围  (只写答案)

【答案】1;(2C-30), S=6;(3

【解析】

1)根据题意把A的坐标代入反比例函数的图像与一次函数,分别求出kb,从而即可确定反比例函数和一次函数的解析式;

2)由题意先求出C的坐标,再利用三角形面积公式求出ΔAOC的面积;

3)根据函数的图象即可得出一次函数的值大于反比例函数的值的x的取值范围.

解:(1)将点A14)代入反比例函数的图像与一次函数,求得以及

所以反比例函数和一次函数的解析式分别为:

2)因为C在一次函数的图象上以及x轴上,所以求得C坐标为(-30),

则有OC=3, ΔAOCOC为底的高为4,所以ΔAOC的面积为:

3)由可知一次函数的值大于反比例函数的值,

Bm-2)代入,得出m=-2,即B-2-2),

此时当时,一次函数的值大于反比例函数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,ABBD,∠BAD18°,CBD上,BC0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31cos18°≈0.95tan18°≈0.325

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图:⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有( )

A.3 B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则=___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过的三个顶点,其中点,点轴,点是直线下方抛物线上的动点.

1)求抛物线的解析式;

2)过点且与轴平行的直线与直线分别交与点,当四边形的面积最大时,求点的坐标;

3)当点为抛物线的顶点时,在直线上是否存在点,使得以为顶点的三角形与相似,若存在,直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+cx轴交于A(-10)B(30)两点,与y轴交于点C. D(23)在该抛物线上,直线ADy轴相交于点E,点F是直线AD上方的抛物线上的动点.

1)求该抛物线对应的二次函数关系式;

2)当点F到直线AD距离最大时,求点F的坐标;

3)如图2,点M是抛物线的顶点,点P的坐标为(0n),点Q是坐标平面内一点,以AMPQ为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.

(1)求证:△ABP∽△PCD;

(2)若AB=10,BC=12,当PD∥AB时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过两点,与x轴的另一个交点为C,顶点为D,连结CD

1)求该抛物线的表达式;

2)点P为该抛物线上一动点(与点BC不重合),设点P的横坐标为t

①当点P在直线BC的下方运动时,求的面积的最大值;

②该抛物线上是否存在点P,使得若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.

已知:如图1外的一点.

求作:过点的切线.

作法:如图2

①连接

②作线段的垂直平分线,直线

③以点为圆心,为半径作圆,交于点

④作直线.

就是所求作的的切线.

根据上述作图过程,回答问题:

1)用直尺和圆规,补全图2中的图形;

2)完成下面的证明:

证明:连接

∵由作图可知的直径,

______)(填依据),

又∵的半径,

就是的切线(______)(填依据).

查看答案和解析>>

同步练习册答案