精英家教网 > 初中数学 > 题目详情

已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线上任意一点,过P作PH丄x轴.垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在笫一象限相交于A、B两点,若DA=2DB.且S△ABD=4数学公式.求a的值.

解:(1)设抛物线的解析式为y=kx2+a,
∵经过点(2a,2a),
4a2k+a=2a,
∴k=
则抛物线的解析式为:y=x2+a;

(2)连接PD,设抛物线上一点P(x,y),过P作PH⊥x轴,PG⊥y轴,
在Rt△GDP中,由勾股定理得:PD2=DG2+PG2=(y-2a)2+x2=y2-4ay+4a2+x2
∵y=x2+a,
∴x2=4a×(y-a)=4ay-4a2
∴PD2=y2-4ay+4a2+4ay-4a2=y2=PH2
∴PD=PH,

(3)过B作BE⊥x,AF⊥x,
由(2)的结论:BE=DB,AF=DA,
∵DA=2DB,
∴AF=2BE,
∴AO=2OB,
∴B是OA的中点,
∵C是OD的中点,
连接BC,∴BC===BE=DB,
过B作BR⊥y,
∵BR⊥CD,
∴CR=DR,OR=a+=
=x2+a,
∴x2=2a2
∵x>0,
∴x=a,
∴B(a,),AO=2OB,
∴S△OBD=S△ABD=4
×2a×a=4
∴a2=4,
∵a>0,
∴a=2,
分析:(1)根据抛物线的图象假设出解析式为y=kx2+a,将经过点(2a,2a),代入求出即可;
(2)根据勾股定理得出PD2=DG2+PG2,进而求出PD=PH;
(3)利用(2)中结论得出BE=DB,AF=DA,即可得出B是OA的中点,进而得出S△OBD=S△ABD=4,即可得出a的值.
点评:此题主要考查了二次函数的综合应用以及勾股定理的应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

根据下列条件,分别求出对应的二次函数关系式.
(1)已知抛物线的顶点是(-1,-2),且过点(1,10);
(2)已知抛物线过三点:(0,-2),(1,0),(2,3).

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知抛物线的顶点是M(1,16),且与x轴交于A,B两点(A在B的左边),若AB=8,求该抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线上任意一点,过P作PH丄x轴.垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在笫一象限相交于A、B两点,若DA=2DB.且S△ABD=4
2
.求a的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线的顶点是(-1,-2),且过点(1,10).求此抛物线对应的二次函数关系式
y=3x2+6x+1
y=3x2+6x+1

查看答案和解析>>

科目:初中数学 来源: 题型:

根据下列条件,求出二次函数的关系式.已知抛物线的顶点是(-1,-2),且过点(1,10).

查看答案和解析>>

同步练习册答案