【题目】足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.
(1)请直接写出与之间的函数关系式和自变量的取值范围;
(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?
【答案】(1)(2)当x=52时,w有最大值为2640.
【解析】
(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
(2)利用利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.
(1)由题意得:y=300-10(x-44)=-10x+740,
每本进价40元,且获利不高于30%,即最高价为52元,即x≤52,故:44≤x≤52,
(2)w=(x-40)(-10x+740)=-10(x-57)2+2890,
当x<57时,w随x的增大而增大,
而44≤x≤52,所以当x=52时,w有最大值,最大值为2640,
答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润2640元.
科目:初中数学 来源: 题型:
【题目】如图,已知在中,∠ACB=90°,,延长边BA至点D,使AD=AC,联结CD.
(1)求∠D的正切值;
(2)取边AC的中点E,联结BE并延长交边CD于点F,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.
(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请求出的m值;如不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四张扑克牌的点数分别是2、3、4、8,将它们洗匀后背面朝上放在桌面上.
(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;
(2)从中先随机抽取一张牌,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋里装有4个标有,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).
(1)画树状图或列表,写出点Q所有可能的坐标;
(2)求点Q(x,y)落在第二象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的编号组合是( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是圆上任意一点,点D是AC中点,OD交AC于点E,BD交AC于点F,若BF=1.25DF,则tan∠ABD的值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com