【题目】一次函数y1=﹣2x+b的图象交x轴于点A、与正比例函数y2=2x的图象交于点M(m,m+2),
(1)求点M坐标;
(2)求b值;
(3)点O为坐标原点,试确定△AOM的形状,并说明你的理由.
【答案】(1)M坐标(2,4);(2)b=8;(3)△AOM是等腰三角形,理由见解析
【解析】
(1)把点M的坐标代入正比例函数关系式可得关于m的方程,解方程即可求出m,进而可得答案;
(2)把(1)题中求得的点M坐标代入一次函数的关系式即可求得结果;
(3)易求点A的坐标,然后可根据两点间的距离公式和勾股定理依次求出OA,AM,OM的长,进而可得结论.
解:(1)把点M(m,m+2)代入y2=2x得:m+2=2m,解得:m=2,
∴点M坐标(2,4);
(2)把点M坐标(2,4)代入y1=﹣2x+b中,得:4=﹣2×2+b,解得:b=8;
(3)△AOM是等腰三角形.
理由:如图,由(2)知,b=8,∴y1=﹣2x+8,
令y=0,则x=4,∴A(4,0),
∴OA=4,AM=,OM=,
∴OM=AM,
∴△AOM是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数经过点B(3,0),C(0,3),D(4,-5)
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)若P是抛物线上一点,且S△ABP=S△ABC,这样的点P有几个请直接写出它们的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线AB:y=kx+b经过点B(1,4)、A(5,0)两点,且与直线y=2x-4交于点C.
(1)求直线AB的解析式并求出点C的坐标;
(2)求出直线y=kx+b、直线y=2x-4及与y轴所围成的三角形面积;
(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x-4于点Q,若线段PQ的长为3,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N
(1)如图①,若∠BAC=110°,则∠MAN= °,若△AMN的周长为9,则BC=
(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;
(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴交于点,与轴交于点 ,与直线相交于点 ,
(1)求直线 的函数表达式;
(2)求 的面积;
(3)在 轴上是否存在一点 ,使是等腰三角形.若不存在,请说明理由;若存在,请直接写出点 的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD
(1)求证:AC是⊙O的切线;
(2)若⊙O的半径为4,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,点沿边从点向点以的速度移动;同时,点从点沿边向点以的速度移动,设点、移动的时间为.问:
当为何值时的面积等于?
当为何值时是直角三角形?
是否存在的值,使的面积最小,若存在,求此时的值及此时的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当你站在博物馆的展览厅中时,你知道站在何处观赏最理想吗?如图,设墙壁上的展品最高点P距地面2.5米,最低点Q距地面2米,观赏者的眼睛F距地面1.6米,当视角∠PEQ最大时,站在此处观赏最理想,则此时E到墙壁的距离为( )米.
A. 1 B. 0.6 C. 0.5 D. 0.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com