【题目】2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°
(1)求发射台与雷达站之间的距离LR;
(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?
(参考数据:son42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )
【答案】
(1)
解:在Rt△ALR中,AR=6km,∠ARL=42.4°,
由cos∠ARL= ,得LR=ARcos∠ARL=6×cos42.4°≈4.44(km).
答:发射台与雷达站之间的距离LR为4.44km
(2)
解:在Rt△BLR中,LR=4.44km,∠BRL=45.5°,
由tan∠BRL= ,得BL=LRtan∠BRL=4.44×tan45.5°≈4.44×1.02=4.5288(km),
又∵sin∠ARL= ,得AL=ARsin∠ARL=6×sin42.4°≈4.02(km),
∴AB=BL﹣AL=4.5288﹣4.02=0.5088≈0.51(km).
答:这枚火箭从A到B的平均速度大约是0.51km/s.
【解析】(1)根据题意直接利用锐角三角函数关系得出LR=ARcos∠ARL求出答案即可;(2)根据题意直接利用锐角三角函数关系得出BL=LRtan∠BRL,再利用AL=ARsin∠ARL,求出AB的值,进而得出答案.此题主要考查了解直角三角形的应用,正确选择锐角三角函数关系是解题关键.
科目:初中数学 来源: 题型:
【题目】如图,一副三角板的两个直角顶点重合在一起.
(1)若∠EON=140°,求∠MOF的度数;
(2)比较∠EOM与∠FON的大小,并写出理由;
(3)求∠EON+∠MOF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=10,BC=6,点E为CD边上一点。
(1)当AE平分∠BED时,求DE的长。
(2)你能把矩形ABCD沿某条直线剪一刀分成两块,再拼成一个菱形吗?如果能,在备用图中画出示意图,并计算菱形较长对角线的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:
①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④S△EMN= .
上述结论中正确的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx(k<0)与双曲线交于A(x1,y1),B(x2,y2)两点,则3x1y2-5x2y1的值为 __________.
【答案】-6
【解析】试题分析:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点,
∴x1y1=x2y2=-3①,
∵直线y=kx(k<0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,
∴x1=-x2,y1=-y2②,
∴原式=-3x1y1+5x2y2=9-15=-6.
故答案为:-6.
点睛:本题考查的是反比例函数与一次函数的交点问题,反比例函数的对称性,根据反比例函数的图象关于原点对称得出x1=-x2,y1=-y2是解答此题的关键.
【题型】填空题
【结束】
15
【题目】A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了 50%,而从A地到B地的时间缩短了 1h .若设原来的平均车速为xkm/h,则根据题意可列方程为 _____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.
(1)判断直线l与⊙O的位置关系,并说明理由;
(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
(3)在(2)的条件下,若DE=4,DF=3,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;
(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为 个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC,∠A、∠B、∠C之和为多少?为什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延长BC到E
∵∠ACD=∠ (已作)
AB∥CD( )
∴∠B= ( )
而∠ACB+∠ACD+∠DCE=180°
∴∠ACB+ + =180°( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:
(1)当购买乒乓球x盒时,两种优惠办法各应付款多少元?(用含x的代数式表示)
(2)如果要购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com