精英家教网 > 初中数学 > 题目详情
(2008•安徽)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,求证:AB=AC;
(2)如图2,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.

【答案】分析:(1)求证AB=AC,就是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么可以用斜边直角边定理(HL)证明直角三角形DEB和DFC全等来实现;
(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰三角形ABC中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;
(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.
解答:(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,
由题意知,OE=OF,OB=OC,
∴Rt△OEB≌Rt△OFC,
∴∠ABC=∠ACB,
从而AB=AC;

(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,
由题意知,OE=OF.∠BEO=∠CFO=90°,
∵在Rt△OEB和Rt△OFC中

∴Rt△OEB≌Rt△OFC(HL),
∴∠OBE=∠OCF,
又∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;

(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线不重合时,AB≠AC.(如示例图)
点评:本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源:2010年重庆市江津区重点中学升学数学中考模拟试卷(解析版) 题型:解答题

(2008•安徽)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发赶往30千米外的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再赶往A镇参加救灾.一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方处地形复杂,必须由一分队用1小时打通道路.已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.

(1)若二分队在营地不休息,问二分队几个小时能赶到A镇?
(2)若需要二分队和一分队同时赶到A镇,二分队应在营地休息几个小时?
(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理图象的代号,并说明它们的实际意义.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前知识点回归+巩固 专题7 一元二次方程(解析版) 题型:解答题

(2008•安徽)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发赶往30千米外的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再赶往A镇参加救灾.一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方处地形复杂,必须由一分队用1小时打通道路.已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.

(1)若二分队在营地不休息,问二分队几个小时能赶到A镇?
(2)若需要二分队和一分队同时赶到A镇,二分队应在营地休息几个小时?
(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理图象的代号,并说明它们的实际意义.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前知识点回归+巩固 专题15 三角形(解析版) 题型:解答题

(2008•安徽)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,求证:AB=AC;
(2)如图2,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.

查看答案和解析>>

科目:初中数学 来源:2008年安徽省中考数学试卷(解析版) 题型:解答题

(2008•安徽)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,求证:AB=AC;
(2)如图2,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.

查看答案和解析>>

同步练习册答案