精英家教网 > 初中数学 > 题目详情
5.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=72°.

分析 利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的读数,进而求得∠BAD的度数.

解答 解:∵正五边形ABCDE的内角和为(5-2)×180°=540°,
∴∠E=$\frac{1}{5}$×540°=108°,∠BAE=108°
又∵EA=ED,
∴∠EAD=$\frac{1}{2}$×(180°-108°)=36°,
∴∠BAD=∠BAE-∠EAD=72°,
故答案为:72°.

点评 本题考查了正多边形的计算,重点掌握正多边形内角和公式是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.【问题情境】如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小丽给出的提示是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
请根据小丽的提示进行证明.

【变式探究】如图③,当点P在BC延长线上时,其余条件不变,试猜想PD、PE、CF三者之间的数量关系并证明.
【结论运用】如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小刚对自己家近四年的家庭支出情况进行了统计,并制作了下列两个统计图,根据统计图回答下列问题:

(1)已知2014年小刚家教育支出为0.27万元,请将图l中的统计图补充完整:
(2)求近四年小刚家总支出的中位数和这四年平均每年的总支出;
(3)根据以上信息,请你估计小刚家2017年教育支出大约是多少万元?并说明你是怎样估计的.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算-2-2-|tan60°-2|+$\sqrt{24}$÷$\sqrt{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若一个正多边形的一个外角等于36°,则这个正多边形有35条对角线;
用科学计算器计算:135×$\sqrt{13}$sin13°≈83503.8.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列计算正确的是(  )
A.(-3a2b)3=-3a5b3B.$\frac{1}{2}$ab2•(-4a3b)=-2a4b3
C.4m3n2÷m3n2=0D.a5-a2=a3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,将一个边长分别为4、8的矩形纸片ABCD折叠,使点C与点A重合(AB=4,BC=8),则折痕EF的长度为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABC中,∠BAC=90°,AD⊥BC,BE平分∠ABC,EF⊥BC,FM⊥AC,垂足分别是D,F,M,求证:FM=FD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.
(一)尝试探究
如图1所示,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.
(1)如图2所示,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=30度,线段BE、EF、FD之间的数量关系为BE+DF=EF.
(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.
(二)拓展延伸
如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.

查看答案和解析>>

同步练习册答案