精英家教网 > 初中数学 > 题目详情

某校八年级一班进行为期5天的图案设计比赛,作品上交时限为周一至周五,班委会将参赛逐天进行统计,并绘制成如图所示的频数直方图.已知从左到右各矩形的高度比为2:3:4:6:.且已知周三组的频数是8.

(1)本次比赛共收到 40 件作品.

(2)若将各组所占百分比绘制成扇形统计图,那么第五组对应的扇形的圆心角是 90 度.

(3)本次活动共评出1个一等奖和2个二等奖,若将这三件作品进行编号并制作成背面完全相同的卡片,并随机抽出两张,请你求出抽到的作品恰好一个一等奖,一个二等奖的概率.


解:(1)收到的作品总数是:8÷=40;

(2)第五组对应的扇形的圆心角是:360°×=90°;

(3)用A表示一等奖的作品,B表示二等奖的作品.

共有6中情况,则P(恰好一个一等奖,一个二等奖)==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中心E,且与边BC交于点D.

(1)求反比例函数的解析式和点D的坐标;

(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,矩形ABCD中,AB=8,点EAD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EFCD于点G,若GCD的中点,则BC的长是    .

 


查看答案和解析>>

科目:初中数学 来源: 题型:


一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p,随机摸出另一个小球,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知关于x的方程x2+2x+k=0的一个根是﹣1,则k= ______

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C坐标分别为(10,0)和(,﹣),以OB为直径的⊙A经过C点,直线l垂直x轴于B点.

(1)求直线BC的解析式;

(2)求抛物线解析式及顶点坐标;

(3)点M是⊙A上一动点(不同于O,B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想m•n的值,并证明你的结论;

(4)若点P从O出发,以每秒一个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是(  )

 

A.

AB=DE

B.

∠B=∠E

C.

EF=BC

D.

EF∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).

第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;

第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;

依次操作下去…

(1)图2中的△EFD是经过两次操作后得到的,其形状为 等边三角形 ,求此时线段EF的长;

(2)若经过三次操作可得到四边形EFGH.

①请判断四边形EFGH的形状为 正方形 ,此时AE与BF的数量关系是 AE=BF 

②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;

(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如果等腰三角形的一个底角是80°,那么顶角是      度.

查看答案和解析>>

同步练习册答案