15£®Èçͼ£¬Õý·½ÐÎABCDÊÇÒ»Õű߳¤Îª12¹«·ÖµÄƤ¸ï£®Æ¤µñʦ¸µÏëÔÚ´ËƤ¸ïÁ½ÏàÁڵĽÇÂä·Ö±ðÇÐÏ¡÷PDQÓë¡÷PCRºóµÃµ½Ò»¸öÎå±ßÐÎPQABR£¬ÆäÖÐPD=2DQ£¬PC=RC£¬ÇÒP¡¢Q¡¢
RÈýµã·Ö±ðÔÚCD¡¢AD¡¢BCÉÏ£¬ÈçͼËùʾ£®
£¨1£©µ±Æ¤µñʦ¸µÇÐÏ¡÷PDQʱ£¬ÈôDQ³¤¶ÈΪx¹«·Ö£¬ÇëÄãÒÔx±íʾ´Ëʱ¡÷PDQµÄÃæ»ý£® 
£¨2£©³Ð£¨1£©£¬µ±xµÄֵΪ¶àÉÙʱ£¬Îå±ßÐÎPQABRµÄÃæ»ý×î´ó£¿ÇëÍêÕû˵Ã÷ÄãµÄÀíÓɲ¢Çó³ö´ð°¸£®

·ÖÎö £¨1£©¸ù¾ÝÌõ¼þ±íʾ³öPD£¬´Ó¶øµÃµ½¡÷PDQµÄÃæ»ý£»
£¨2£©·Ö±ðÇó³öÕý·½ÐÎABCDµÄÃæ»ý£¬¡÷PDQ£¬¡÷PCRµÄÃæ»ý£¬ÔÙ×÷²îÇó³öÎå±ßÐεÄÃæ»ý£¬×îºóÈ·¶¨³öÈ¡¼«ÖµÊ±µÄxÖµ£®

½â´ð ½â£º£¨1£©ÉèDQ=x¹«·Ö£¬
¡àPD=2DQ=2x¹«·Ö£¬
¡àS¡÷PDQ=$\frac{1}{2}$x¡Á2x=x2£¨Æ½·½¹«·Ö£©£¬
£¨2£©¡ßPD=2x¹«·Ö£¬CD=12¹«·Ö£¬
¡àPC=CR=12-2x£¨¹«·Ö£©£¬
¡àSÎå±ßÐÎPQABR=SÕý·½ÐÎABCD-S¡÷PDQ-S¡÷PCR
=122-x2-$\frac{1}{2}$£¨12-2x£©2
=144-x2-$\frac{1}{2}$£¨144-48x+4x2£©
=144-x2-72+24x-2x2
=-3x2+24x+72
=-3£¨x2-8x+42£©+72+3¡Á16
=-3£¨x-4£©2+120£¬
¹Êµ±x=4ʱ£¬Îå±ßÐÎPQABRÓÐ×î´óÃæ»ýΪ120ƽ·½¹«·Ö£®

µãÆÀ ´ËÌâÊÇËıßÐÎ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁËÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬Îå±ßÐÎÃæ»ýµÄ¼ÆËã·½·¨£¬½â±¾ÌâµÄ¹Ø¼üÊÇÈý½ÇÐεÄÃæ»ýµÄ¼ÆË㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èôa•b¡Ù1£¬ÇÒÓÐ2a2+5a+1=0£¬b2+5b+2=0£¬Ôò$\sqrt{ab}$+$\frac{1}{\sqrt{ab}}$µÄֵΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐÔËËã²»ÄÜÔËÓÃƽ·½²î¹«Ê½¼ÆËãµÄÊÇ£¨¡¡¡¡£©
A£®£¨2a-b£©£¨2a+b£©B£®£¨x+2y£©£¨-2y+x£©C£®£¨2a+b£©£¨a-2b£©D£®£¨-x-y£©£¨-x+y£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐͼÐÎÖУ¬ÊôÓÚÁ¢ÌåͼÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÎÒÃǸø³öÈç϶¨Ò壺˳´ÎÁ¬½ÓÈÎÒâÒ»¸öËıßÐθ÷±ßÖеãËùµÃµÄËıßÐνÐÖеãËıßÐΣ®
£¨1£©Èçͼ1£¬ËıßÐÎABCDÖУ¬µãE£¬F£¬G£¬H·Ö±ðΪ±ßAB£¬BC£¬CD£¬DAµÄÖе㣮
ÇóÖ¤£ºÖеãËıßÐÎEFGHÊÇƽÐÐËıßÐΣ»
£¨2£©Èçͼ2£¬µãPÊÇËıßÐÎABCDÄÚÒ»µã£¬ÇÒÂú×ãPA=PB£¬PC=PD£¬¡ÏAPB=¡ÏCPD£¬µãE£¬F£¬G£¬H·Ö±ðΪ±ßAB£¬BC£¬CD£¬DAµÄÖе㣬²ÂÏëÖеãËıßÐÎEFGHµÄÐÎ×´£¬²¢Ö¤Ã÷ÄãµÄ²ÂÏ룻
£¨3£©Èô¸Ä±ä£¨2£©ÖеÄÌõ¼þ£¬Ê¹¡ÏAPB=¡ÏCPD=90¡ã£¬ÆäËûÌõ¼þ²»±ä£¬Ö±½Óд³öÖеãËıßÐÎEFGHµÄÐÎ×´£®£¨²»±ØÖ¤Ã÷£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³µØµÄÒ»×ùÈËÐÐÌìÇÅÈçͼËùʾ£¬ÌìÇŸßΪ6Ã×£¬ÆÂÃæBCµÄƶÈΪ1£º1£¬ÎªÁË·½±ãÐÐÈËÍƳµ¹ýÌìÇÅ£¬Óйز¿Ãžö¶¨½µµÍƶȣ¬Ê¹ÐÂÆÂÃæµÄƶÈΪ1£º$\sqrt{3}$£®
£¨1£©ÇóÐÂÆÂÃæµÄƽÇa£»
£¨2£©Ô­ÌìÇŵײ¿ÕýÇ°·½8Ã×´¦£¨PBµÄ³¤£©µÄÎÄ»¯Ç½PMÊÇ·ñÐèÒª²ð³ý£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬µãP1£¨x1£¬y1£©£¬µãP2£¨x2£¬y2£©£¬¡­£¬µãPn£¨xn£¬yn£©ÔÚº¯Êý$y=\frac{1}{x}$£¨x£¾0£©µÄͼÏóÉÏ£¬¡÷P1OA1£¬¡÷P2A1A2£¬¡÷P3A2A3£¬¡­£¬¡÷PnAn-1An¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬Ð±±ßOA1¡¢A1A2¡¢A2A3£¬¡­£¬An-1An¶¼ÔÚxÖáÉÏ£¨nÊÇ´óÓÚ»òµÈÓÚ2µÄÕýÕûÊý£©£¬Èô¡÷P1OA2µÄÄÚ½ÓÕý·½ÐÎB1C1D1E2µÄÖܳ¤¼ÇΪl1£¬¡÷P2A1A2µÄÄÚ½ÓÕý·½ÐÎB2C2D2E2µÄÖܳ¤¼ÇΪl2£¬¡­£¬¡÷PnAn-1AnµÄÄÚ½ÓÕý·½ÐÎBnCnDnEnµÄÖܳ¤¼ÇΪln£¬ÔòÓú¬nµÄʽ×Ó±íʾl1+l2+l3+¡­+lnΪ£¨¡¡¡¡£©
A£®$\frac{8\sqrt{n}}{3}$B£®2$\sqrt{n}$C£®$\frac{4\sqrt{n}}{3}$D£®$\frac{2\sqrt{n}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¼ÆË㣺|-3|+$\sqrt{9}$-£¨-1£©2+£¨-$\frac{1}{2}$£©0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®½â·½³Ì£º$\frac{x}{x-7}$-$\frac{1}{7-x}$=2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸