精英家教网 > 初中数学 > 题目详情
用总长为32m的篱笆墙围成一个扇形的花园.
(1)试写出扇形花园的面积y(m2)与半径x(m)之间的函数关系式和自变量x的取值范围;
(2)用描点法作出函数的图象;
(3)当扇形花园半径为多少时,花园面积最大?最大面积是多少?此时这个扇形的圆心角是多大(精确到0.1度)?
(4)请回答:如果同样用32m的篱笆围成一个面积最大的矩形花园,这个花园的面积是多少?对比上面的结论,你有什么发现?
(1)∵扇形半径为xm,
∴扇形的弧长为(32-2x)m.
由扇形面积公式得
y=
1
2
(32-2x)x,
即y=-x2+16x.(3分)
自变量x的取值范围是0<x<16.(4分)

(2)将函数关系式写成y=-(x-8)2+64.
列表其图象如图所示:
x2468101214
y28486064604828
(3)由图象可知,当x=8时,y有最大值64.
即当扇形半径为8m时,花园面积最大,最大面积为64m2
设此时扇形的圆心角约为n°,
n
360
•π•82=64解得n≈114.6°.
因此,扇形的圆心角约为114.6°.(10分)

(4)这个矩形花园的面积也是64m2,与最大扇形花园面积相等(或答:周长相等的最大矩形面积与最大扇形的面积相等).(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一位运动员在距篮下4.5米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,篮筐中心到地面距离为3.05米,建立坐标系如图.该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,他跳离地面的高度为0.2米,问这次投篮是否命中,为什么?若不命中,他应向前(或向后)移动几米才能使球准确命中?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线c1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.
(1)求抛物线c1解析式;
(2)求四边形ABDE的面积;
(3)△AOB与△BDE是否相似,如果相似,请予以证明;如果不相似,请说明理由;
(4)设抛物线c1的对称轴与x轴交于点F,另一条抛物线c2经过点E(抛物线c2与抛物线c1不重合),且顶点为M(a,b),对称轴与x轴相交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

求过(-1,0),(3,0),(1,-5)三点的抛物线的解析式,并画出该抛物线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

松花江大桥的一个桥拱为抛物线形状,拱顶A离桥面50m,桥面上拱形钢梁之间的距离BC=120m,建立如图所示的直角坐标系.
(1)写出A,B,C三点的坐标;
(2)求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:
①每个零件的成本价为40元;
②若订购量在100个以内,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;
③实际出厂单价不能低于51元.
根据以上信息,解答下列问题:
(1)当一次订购量为______个时,零件的实际出厂单价降为51元.
(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价-成本).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?
(参考公式:当x=-
b
2a
时,二次函数y=ax2+bx+c(a0)有最小(大)值
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线的解析式是y=
1
4
x2
+1,点C的坐标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.
(1)写出点M的坐标;
(2)当四边形CMQP是以MQ,PC为腰的梯形时.
①求t关于x的函数解析式和自变量x的取值范围;
②当梯形CMQP的两底的长度之比为1:2时,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一名学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的函数关系为y=-
1
12
x2+
2
3
x+
5
3

(1)画出函数的图象.
(2)观察图象,指出铅球推出的距离.

查看答案和解析>>

同步练习册答案